43

CHAPTERIV

Classes of Invertible Functions

In this chapter, t.hree classes of machines are presented which compute only functions
with inverses computable in polynomial time. Essentially any other natural class of
machines which is not a subclass of one of these three classes will contain a machine
computing a function, no inverse for which is computable in polynomial time.

We also investigate classes of circuits which compute only functions with easy
inverses. Among other results, we show that functions computed by narrow circuits have

inverses computed by shallow circuits.

Classes of Machines Computing Invertible Functions

Let C; be the class of all Turing machines M such that for some nonnegative integers j
and [, M has

(a) j one-way read-only input tapes

{(b) one logspace-bounded work tape

(c) one pushdown store

{d) [one-way write-only output tapes.

Let Cg be the class of all Turing machines M such that for some nonnegative integers j
and [, M has
(a) j one-way read-only input tapes

(b) one finite-crossing read-write input tape

44

(c) one logspace-bounded work tape

{d) [one-way write-only output tapes.

Let Cg be the class of all Turing machines M such that for some nonnegative integers J, k,
{and m, M has

(a) j one-way read-only input tapes

(b) one unrestricted two-way input tape

{¢) k counters, each of which makes af most m reversals

(d) { one-way write-only output tapes.

We will show that any honest function computed by a machine in Cy, Cy, or C3 ha.s an
easy inverse. To that end, we first prove a preliminary theorem.
Theorem 4.1:

(a) Let fbe an honest function computed by a machine in Cy. Then range(f) € PUNC.

{b) Let fbe an honest function computed by a machine in C. Then range(f) € NLOG.

(e) Let fbe an honest function computed by a machine in C3. Then range(f) € NLOG.
Proof: We will prove (a), (b) and (¢) only for the case in which there is one input tape. It is
straightforward to extend the proofs to handle the case where there are additional one-way
input tapes.

(a) Let fbe an honest function computed by a machine M in Cy. Assume without loss
of generality that on each move M either pushes or pops symbols from the stack. Assertion (a)
could be easily proved by constructing a one-way NAuxPDA accepting range(f). However, in
order to facilitate proofs of subsequent theorems, we will prove (a) by presenting a logspace-
bounded alternating Turing machine M’ which uses treesize ;10”3 and accepts a set L such
that for a certain function A (given below) which is computable in polynomial time, y#h(ly]) €

L iff y € range(f). L isthus in NC, and hence range(f) € PUNC.

45

We will use a definition of surface configuration which is slightly different from that
used in the proof of Theorem 3.3; in this chapter we wish to record the positions of the input
and output heads as well. A surface configuration of a machine M in C; on input x is a 6-tuple
(q,w,ij,l,[,a), where q is a state of M, w is a string of worktape symbols (the worktape
contents), iis an integer, 1 < i < |x| (the input head position), j is an integer, 1 < j < |f(x)| (the
output head position), [is an integer, 1 < [< |w| (the worktape head position), I is a pushdown
symbol (the stack top), and a is the i-th symbol of the input x. A pair of surface configurations
(C,D) is a realizable pair if M can starf a computation with surface configuration C with some
stack height A, and eventually enter a state with surface configuration D with stack height A,
with the stack height never lgss than h during the computation from C to D. Since M pushes
or pops a symbol on every move, it is easy to verify that (C,D) is a realizable pair iff one of tl'le
following holds:

(i) C=D,

(ii) there is a configuration E such that (C,E) and (E,D) are realizable pairs, or

(iii)there is a realizable pair (E,F) such that C - E via a pushof "'and F D via a pop

of I, for some stack symbol I
(These definitions are similar to those used in e.g. [Ru-81].)

Let p be a polynomial such that, if y € range(f), then there is an x such that |x| < p(ly).
Such a p exists, since fis honest. Let W(n) be the set of all possible surface configurations of M
on inputs of length < p(n). Let A(n) be a listing of all realizable pairs (C,D) such that C and D
are both in W(n), the input head position in C equals the input head position in D, and the
output head position in C equals the output head position in D. Thus (C,D) appears in h(n) iff
there is a computation from C to D which leaves the input and output heads fixed. It is clear

that A(n) is computable in polynomial time.

46

Now consider the alternating Turing machine M’ which on input y#h performs the

following computation.

Guess a binary number n and check universally that n < p(y]). (n is the guessed
length of x.)
C : = initial surface configuration for inputs of size n
D : = final surface configuration for inputs of size n and outputs of length |y
while C = D and (C,D) does not appear in h
existentially choose (1) or (2) below:
(1) (This corresponds to checking if condition (iii) holds.)
Guess a pair of configurations (E,F) such that C -~ E viaa pushof FTand F - D
via a pop of I', for some stack symbol I'.
If the move C + E produces the j-th output symbol, check that the symbol
produced matches the j-th symbol of y.
If the move F +— D produces the j-th output symbol, check that the symbol
produced matches the j-th symbol of y.
C:=E
D:=F
(2) (This corresponds to checking if condition (ii) holds.)
Guess a configuration E, and universally choose (2.1) and (2.2) below:

(2.1) D:=E :
2.2) C:=E
endwhile

At this point, C = D, or (C,D) appears in . Halt and accept.

It is straightforward to verify that M’ accepts an input y#h(|y]) iff there is a string x .
such that M outputs y on input x. M’ simulates the computation of M by verifying that the
initial configuration C and the final configuration D of M constitute a realizable pair, and
that there is a computation starting in C and ending in D which outputs y. The string x is
determined by the sequence of surface configurations which witness that (C,D) is a realizable
pair.

The size of any accepting computation tree of M’ on input y#h(|y]) is bounded by a
polynomial in the number of times which M moves its input and output heads on input y. The
number of times which M moves its input and output heads is in turn bounded by a
polynomial in |y]. M’ can be modified to accept in treesize nO(1’ on all inputs (not just those of
the form y#h(]y|)). M' then accepts a language in NC.

{b) Let fbe an honest function computed by a machine M in Cs. In order to simplify

the presentation of the proof, we will only prove (b) only for the case in which M’s input head

47

changes direction only times, where k is even, and furthermore, each of these changes in
direction takes place after making a complete sweep across the input tape. A computation of
M can thus be divided into £+ 1 phases, with phase i occurring afte r the i-th time the input
head changes direction. It is straightforward to extend the proof pressented here to prove the
more general assertion (b).

We now construct a nondeterministic logspace-bounded Twring machine M’ which
accepts range(f). At specified points j in the computation of M’, the wo rktape of M’ will contain
k configurations of M, Co{), C1()),..., Cx(/). Each C,(j) is a configuration of M which occurs
during phase { of M’s computation, and the input head position is the same in each
configuration C;(j). This is diagrammed in Figure 4-1. An accepting computation of M’ will be
viewed as representing a computation of M in the way suggested by Figure 4-2. (The thin

arrow represents the path of M’s computation.)

Co)

Ci»

C()

workspace

Figure 4-1: a configuration of M’

48

Co(1) Co(2) Col2)
Cl(l) C1(2) Cl(z) v
v >
l__ Cp(1) ’ Cr(2) Cr(2) >
workspace workspace workspace
- - = = = = = = — =3 Direction of M"’s computation = = = = == == - T

Figure 4-2: a representation of an
accepting computation of M’

In these schematic diagrams, C,(z2) = C;4+1(2), and C;() -+ C,j+ D or C;(j) = C,y+ 1)
forallj < z, foralleveni < k,and Ci(1) = C;4+1(1),and C;(j) = Ci(j—= D or C;(j) = C,(j—1) for
allj> 1,foralloddi = k—1.

On input y, M’ operates by first marking off log |y| on its worktape. M’ then guesses a
configuration (Co(1), Cy(1),..., Cx(1)), where Cy(1) is an initial configuration, and for all i C;(1)
is a configuration in which the head on the input tape of M is scanning the left endmarker. In
addition M’ checks that C,(1) = C;4 (1) for all odd (.

[f M’ is in configuration (Co(j), C1(/),--., Cr())), then M’ does the following tasks.

1} Fori:=0tok
if C;()) records that the output symbol at position ris "a,”
then check that the r-th symbol of y is "a.”

49

2) If Ci()) = C;+1()) for all even i, and C()) is a configuration in which M is scanning the
right endmarker,
then check that Cg(j) is a halting configuration where the number of output
symbols written in C.(j) is equal to |yl; if so, halt and accept.
3) Guess a configuration C;(j+ 1) foreach i, 0 < i = &, such that
a) forsomei, C;(j) = C;(G+ 1)
b) M is scanning the same symbol in the same position on tape 1 in each of the
C,j+1)
¢) Foralleveni{,C;() mC,(j+1DorC;()) =C,(j+1)
Forallodd i, C;(j+1) = C;() or C,j+ 1) = C,(j).
4) Enter configuration (Co(j+ 1), C(G+1),..., Cp(f+1)).

It can easily be shown that M’ runs in logspace, and accepts range(f).
() We will use the following fact about machines in C3:
Lemma 4.2: [GI-81]
If M is a machine in C3, then there is a machine M’ in C3 which computes the same
function as M, always halts, and runs in polynomial time. Furthermore, no count;er of

M’ makes more than one reversal during any computation.

Let f be an honest function computed by a machine M in C3 which satisfies the
conditions of Lemma 4.2. Let us represent a configuration of M by a tuple (q,i,j,a,b,c1,c2, ...,
cr), where g is the state of M, i and j are the positions of the input and output heads,
respectively, a is the i-th input symbol, b is the j-th output symbol, and the contents of the £
counters are given by ¢; through cp. Since M runs in polynomial time, the counters are of
polynomial length, and thus a configuration of M can be written in logspace.

Consider the computation of M on some input x. If, for some configuration
(q,ij.a,b,c1,09, ... ,cn), {q,ij,a,b,ci,co, ... ,cp) H*{q,ij + Op,a.b'.ci+ O01,c0+ 89,cp+ &) for
some integers §g through &8, then M will cycle for a while, and it ‘follows that if [is an integer
such thate, + I8, = O0forall r, 1 = r < k, then (q,ij,a.b,cy,c9, ... ,c) H*(q,ij + 8g,a,b".cyp+
>§1,c2+ B2, ... ,cp+ Op) H* . ¥ (q,iy + [6g,a,b' ci+ [61,c0+ 189, ... ,cx+ [8;). Thus the cycle

stops only when one of the counters is emptied. Since there are k£ counters, and each of them

50

only makes one turn, and thus each of them is emptied at most once, there are at most & such
cycles in any computation of M.

Let r be the number of states of M. We now construct a nondeterministic logspace-
bounded machine M’ which accepts range(f). M’ will have 2kr + r tracks on its worktape: r
tracks to model each cycle which may occur during the computation, and r tracks for each part
of the computation which precedes or follows a cycle.

That is, a configuration of M’ contains 2k + 1 bands, laid out as in Figure 4-3. The

band 1

cycle 1

band 2

cycle k

band k+1

Figure 4-3: a configuration of M’

bands labelled “band :” correspond to parts of the computation which are not part of any cycle.

Note that if the i-th input cell of M is visited more than r times, M must be in the same
state during at least two of those visits. Thus we must have (g,ij,a,b,c1,c2, ... ,cx) F* (q,ij +
8g,a,b',c1+ 8y.c0+ 89, ... ,cp+ Op) for some state q and for some integers g through 43, and
hence we have a cycle. Therefore, parts of the computation which are not part of a cycle are r-

crossing bounded. These r-crossing bounded parts of the computation can be simulated

51

exactly as in part (b). Similarly, a single pass through a cycle is an r-crossing bounded
computation, and can be simulated in the same way.

M’ works very similarly to the machine which was defined in part (b). To check that
the computations recorded in band s and cycle s are consistent with each other, it is sufficient
that at some point, M' is in a configux;ation in which the final configuration of M in band s
matches the initial configuration of M in cycle s. To check that the computations recorded in

cycle s and band s + 1 are consistent with each other requires only the following computation:

Let the cycle recorded in cycle s be ' ,

(q,ig.a,b,c1,c9, ... ,cp) F*{q,ij + 8g,a,b',cy + 81,c9+ 09, ... ,cp + Op).

Let [be the largest integer such that ¢, + [6, = Oforallr, 1 < r < k.

Check that symbols j + 1 throughj + §p of y are repeated [consecutive times in y.

Check that the initial configuration of M in bands + 1is(q,ij + [8p,a,b',c1+ I51,c0+

18, ..., cp+ LOk)

~ Although the details of a complete proof are tedious, it is nonetheless straightfofward

to show that such a machine M’ can be constructed which runs in logspace and accepts
range(f). O

We remark that the proof of Theorem 4.1 does not rely on the fact that the automaton
computing the function fis deterministic. [n particular, if M is a nondeterministic machine in
C, or Cg then the set {y | for some x with |x| < p(ly|), there is a computation of M on input x
which outputs y} is in PUNC (NLOG).
Theorem 4.3:

(a) Let fbe an honest function computed by a machine in C,. Then fhas an inverse in
PUNC.

(b) Let fbe an honest function computed by a machine in C5. Then fhas an inverse in
NC.

{¢) Let fbe an honest function computed by a rﬁachine in C3. Then fhas an inverse in

NC.

52

Proof:

(b) and (c) Let fbe an honest function computed by a machine M in Cg or C3. Let M’ be
the machine constructed in the proof of Theorem 4.1. The set L’ = {C#w|M’, when started in
conﬁguration C with input w, accepts} is in NC. Thus by Proposition 1.6 there is a logspace-
bounded alternating Turing machine M which accepts the complement of L', such that every
accepting computation tree of My has at most 210g%Y7 nodes.

Consider the alternating Turing machine My which, on input w, simulates M’ in the
following manner. If M" makes an existeﬁtial move choosing between configurations C and D,

then Mg performs the following steps:

Existentially choose (1) or (2)
(1) Simulate M’ directly from configuration C
(2). Universally choose (2.1) and (2.2)
(2.1) Simulate M’ directly from configuration D
(2.2) Simulate M; on input C#w, and thus accept iff M’ rejects w when
started in configuration C with input w.

Mg accepts range(/f), since M’ does. If Mg accepts on input y, then there is exactly one
accepting computation tree of Mo for y.

An accepting tree of My on input y consists of an accepting computation of M', where
potentially every node C in that computation has attached to it an accepting tree of My on
input C#y. Thus My accepts in treesize nO(112log%t'n = 2log%tn,

Recall that each accepting computation tree of M’, and hence of My, determines a
string x such that Ax) = y. Thus for each y in range(f), Mg selects a unique x such that flx) =
y. Let g(y) denote this x. Clearly, g is an inverse of f.

Now consider the machine M3 which on input (#y simulates M+ on input y, but rejects
whenever it stores a configuration of M in which the i-th input symbol is 0. M3 accepts iff the
i-th bit of g(y) is 1. By Proposition 2.1, g is inrNC.

{a) Let fbe an honest function computed by @ machine M in C|. Let M’ be the machine

constructed in the proof of Theorem 4.1. The set L' = {C#w | M', when started in

53

configuration C with input w, éccepts} is in NC. Thus by Proposition 1.6 there is a logspace-
bounded alternating Turing machine M; which a‘ccepts the complement of L, such that every
accepting computation tree of My has at most 2!0g%"'n nodes.

Consider the alternating Turing machine My which, on input w, simulates M’ in the
following manner. Mg simulates all universal moves of M’ directly, and if M’ makes an
existential move choosing between configurations C and D, then M9 performs the following

steps:

Existentially choose (1) or (2)
(1) Simnulate M’ directly from configuration C
(2) Universally choose (2.1) and (2.2)
(2.1) Simulate M’ directly from configuration D
(2.2) Simulate M; on input C#w, and thus accept iff M’ rejects w when
started in configuration C with input w.

Mg accepts y#h(|y]) iff y € range(f), just as M’ does. [f My accepts an inbut y#h(yD,
then there is exactly one accepting computation tree of Mg for w.

An accepting tree of My on input y#h(|y|) consists of an accepting computation tree of
M’', where potentially everyb node C in that computation tree has attached to it an accepting
tree of M on input C#y#h(|ly]). Thus Mg accepts in treesize nO(1)2log%n = 2logOn,

Recall that each accepting computation tree of M’, and hence of Ms, determines a
string x such that flx) = y. Thus for each y in range(f), Mg selects a unique x such that flx) =
y. Let g(y) denote this x. Clearly, gis an inverse of f.

Now consider the machine M3 which on input i#y simulates My on input y#h(ly]), but
rejects whenever it stores a configuration of M in which the i-th input symbol is 0. Mz accepts
iff the i-th bit of g(y) is 1. M3 is able to construct the bits of A(jy|) as it needs them, without
accessing the input. The total number of nodes which access the input in an accepting tree of
Mg ﬁis therefore the same as in an accepting tree of Mg, and Mgy accepts in treesize 2{0gc’f’n.

Thus g is in PUNC. O

54

Corollary 4.4:
Every honest function which is computed in time 210g°"'» on a machine in C; has an
inverse in NC.
Proof: Immediate from the proof of Theorem 4.3. ‘ O
Class Cj3 contains the class of all two-way DFA transducers, which have often been
studied (see, e.g., [Gr-78a, Gr-78b, [b-82]). Class Cq contains the class of one-way logspace
machines, which were considered in [HIM-78, HM-81]. Class C; contains the class of all
DPDA transducers, which were studied in, e.g., [AU-72, VS-78, [b-83]. It had not been
observed before that the functions computed by these classes of machines have polynomial-
time-computable inverses.
Coroll#ry 4.5:
Every honest two-way DFA transduction has an inverse in NC.
Every honest 1-L reduction has an inverse in NC.

Every honest DPDA transduction has an inverse in NC.

The techniques used above can also be used to show that other classes of functions
have inverses which can be computed relatively quickly. Note that any honest polynomial-

7%V and it is not known if any

time function has an inverse which can be computed in time 2
better upper bound on the complexity of inverting functions exists. Thus any function which
has an inverse computable in subexponential time has an inverse which may be considered to
be “easy” in a sense. The existence of a subexponential-time dlgorithm for computing the
inverse of a function can have practical significance [Ad-79].
Corollary 4.6:

Let C(B) be the class of all one-way B{n)-space bounded AuxPDA’s. where log S(n) =

oflog n).

55

Let C2(B) be the class of all S(n)—épace bounded Turing machines whose input heads
are C(n)-crossing bounded, where S(n)C(n) = B(n).
Let C3(B) be the class of all multicounter machines where each counter is B{n)-
reversal bounded.
If fis a function computed by a machine in Cy(B), C2(B), or C3(B), and log B(n) = oflog
n), then range(f) € NTIME,SPACE(nO(1),20B(n)) and f has an inverse which is
computable in time 20(B(n). Thus, fhas an inverse which is computable in 6(27°) time
foralle > 0.
Proof:‘ Straightforward generalization of the proof of Theorems 4.1 and 4.3. O
As an application of Corollary 4.6, consider the class of functions which are
computable in less than logspace, with no restrictions placed on the way the input héad
accesses the input. Although we are not able to conclude that the inverses of such functions
are computable in polynomial time, we can compute an inverse in subexponential time.
Corollary 4.7:
Let f be an honest function computed in space o(log(n)). Then f has an inverse
computable in o(27) time for all e > 0.
Proof: Any Turing machine which runs in space S(n) = o(logn) has an input head which is
28(n)crossing bounded. Since log(S(n)25(n) = S(n) + log S(n) = o(logn), the result follows
from Corollary 4.6. O
Turing machines which use less than logspace have very severely-limited computing
resources. Nonetheless, it is most likely the case that there are one-way functions computable
by loglogspace-bounded Turing machines. (Recall that any Turing machine which uses

unbounded space uses at least loglogspace infinitely often [SHL-65].)

56

" NTIME,SPACE(nO(D, 10g0(in) is the nondeterministic analog of SC; some results
about this class may be found in [MS-81]. It is unlikely that NTIME , SPACE(nO), logOLin) C
P.

Theorem 4.8:

NTIME,SPACE(nOM), logOtin) C P &

every honest function computable in loglogspace has an inverse which is computable

in polynomial time.

Proof: (=) Let fbe an honest function computed in loglogspace. Then L = {x#y | for some w,
lxw| < q(ly]) and Azw) = y}isin NTIME,SPACE(nO(1), 1og0tin),

(¢=) Let L be accepted by a Turing machine M which uses log#n space and runs in real
time. Let v be some element of L. Then consider the function fix) = y if x = 1#2# ...
n#C1y1Coy2 ... CrysCr+1 where C; = C; 4| via a move which consumes input symbol y; for 1
< [< n, Cp4+1 is an accepting configuration and yyys...y,= y (the configurations C; consist
only of worktape contents, the input head position is not recorded); flx) = v otherwise. [t is'
easy to show that fis an honest function computable in loglogspace, and range(f) = L.. If L has
an inverse computable in polynomial time, then L is in P. [t is known that every language in
NTIME,SPACE(nO), {ogOtlin} is logspace-reducible to some language L which is accepted by
a Turing machine M which uses log#n space and runs in real time [Su-83]. Thus if every such

L were in P, NTIME,SPACE(nO(1ogOtLn) C P would follow. O

Other Classes of Machines

Might it be possible to improve Theorem 4.3 by considering different classes of
machines? For example, instead of the LIFO pushdown store in Cy, might one not consider a
FIFO data structure, as in [BGW-79, Br-801? Also, classes Cy and C3 allow one two-way input
tape and one one-way input tape: might one not consider having two two-way input tapes? In

fact, amid the bewildering variety of data structures and types of automata which have been

57

considered in the literature, must there not surely exist some class of machines which
compute only invertible functions which is not covered by Theorem 4.3?
We argue that the following result shows that any significant extension of Theorem
4.3 to other classes of machines is unlikely.
Theorem 4.9:
Consider the following classes of automata:
Dy = the class of all two-tape two-way DFA’s, where each input head makes at most one
reversal.
D9 = the class of all two-head one-way DF A’s which run in real time.
D3 = the class of all two-way one-counter automata.
Dy = the class of all two-way pushdown automata where the input head and the
pushdown store each make at most one reversal.

D5 = the class of all real-time checking stack automata [Gr-69].

Dg = the class of all real-time Turing machines with two pushdown stores, where each
pushdown store makes at most one reversal.
D7 = the class of all real-time Turing machines with two reset tapes [BGW-79] where
each reset tape is reset at most once.
Dg = the class of all real-time Turing machines with one Post tape [Br-80].
In each class Dj, there is a machine computing an honest function whose range is NP-
complete, and which thus has no inverse computable in polynomial time unless P = NP.
Proof: We prove the result only for the classes Dy and Ds. The prootfs for the other classes are
quite similar.
Let M be any nondeterministic Turing machine which runs in polynomial time (and

which copies its input onto its worktape, so that a configuration of M contains a copy of the

input). A two-tape two-way DFA can scan its tapes one way to see if tupe one contains a list of

58

configurations C;Cj3 ... Ca,, _ {, and tape two contains a list of configurations C9Cyq ... Cap,
suchthatCo; 1+ Cg; for1 =i = m. By scanﬁing the tapes in the reverse direction it can
check if Cg; F Co; + 1. It is now easy to construct an honest function which can be computed
by a two-way DFA whose range is the set accepted by M.

Let us now consider the stack automaton which processes input of the form v#x where
z is an instance of SAT such that variables are encoded in unary and v is a binary vector. (The
set of all satisfiable Boolean formulas in CNF with the variables encoded in unary is an NP-
complete set [Ro-73]. A checking stack automaton can store v in its stack, and start
processing x in a left-to-right manner, printing each symbol of x on its output tape as it
encounters it. At the same time, each time a variable name 17 is encountered, the stack
automaton can check if the r-th bit from the top of the stack is 1 or 0. In its finite control, the
machine can determine if each clause contains a literal which evaluates to true. If, at any
time, the machine discovers'that x is‘not in the proper form, or that some clause contains no
literal which evaluates to true, then the machine can make the clause currently under
consideration trivially true (e.g. by adding a \/ —a) and then scan the rest of the input
producing no output. The stack automaton constructed in this way computes a function with
SAT as its range. By modifying the encoding somewhat, one can construct a real-time
machine computing a function whose range is also NP-complete. ' M

Theorem 4.9 is strong evidence that there are no significant "natural” classes of
machines which compute only invertible functions other than the classes of machines given
by Theorem 4.3. We considered a large number of the types of automata which have been
discussed in the literature. In every case, if the class of machines wus not a subclass of one of
Cy, Co, or C3 of Theorem 4.3, then the class contained one of the classes Dy through Dg.

Let us now discuss the possibility that stronger results might be obtained if only one-

one functions are considered.

59

The class U was defined and discussed by Valiant, Berman, and others {Be-77, Va-78,
(GS-84]. A language is in U iff it as accepted by a nondeterministic Turing machine in
polynomial time which has at most one accepting computation on any input. U should not be
confused with the class of problems, such as Unique-SAT, which consist of those elements of a
set in NP which are accepted by exactly one accepting computation. U C NP, whereas
Unique-SAT is not believed to be in NP.

A set L is in U iff L is the range of an honest function which is computable in
polynomial time and which is one-one on some domain in P [Va-76].

For most of the classes D; discussed in Theorem 4.9, it is true that for every set L; in U
there is a domain Lg in P and an honest function f computed by a machine in D; which is-one-
one on Lz, such that L; = AlLig). Thus if every honest function which computed by a machine
in D; which is one-one on a set L in P could be easily inverted on L, it would follow that P = U,

which seems unlikely.

Classes of Functions with Inverses in SC

Since Theorem 4.3 showed that functions which are easy enough to compute have inverses
in NC and PUNC, it is natural to ask if those inverses are also in SC or DLOG. [n this section
we present some classes of functions with very easy inverses, but we also show that a class of
machines must be very simple indeed to compute only functions with inverses in SC.

Theorem 4.10:
(a) There is an honest function computable by a two-way DFA whose range is
complete for NLOG under logspace reductions.
(b} There is an honest function computed by a one-way, one-counter machine whose
range is complete for NLOG under logspace reductions.
{¢) There is an honest function computed by a one-way, one-turn PDA whose range is

complete for NLOG under logspace reductions.

60

Thus, unless NLOG C SC, there are honest functions in these classes which have no

inverse which is in SC.

Proof: (a) Let L be the set of encodings of graphs with a start vertex and a goal vertex , such
that there is a path in the graph from the start vertex to the goal vertex which goes from left
to right (in the encoding of the graph). L is complete for NLOG under logspace reductions
[HM-81]. A two-way DFA can be constructed which has two tracks on its input tape, where
the top track contains an encoding of a graph and the bottom track contains markers under
certain edges in the graph. The DFA starts scanning its input and printing the description of
the graph on its output tape. When it encounters a marked edge (v,w), it backs up to the
previous marked edge (x,y) (or it backs up to the start vertex if there is no previous marked
edge). Instead of writing (v,w) on its output tape, it writes (y,w) (or (s,w), where s is the sté.rt
vertex). It then returns to (v,w) and continues scanning the input and copying the input to the
output tape. If at any time the DFA discovers that the input tape is not in the proper format,
it writes an edge from the start vertex to the goal vertex on its output tape.

(b) and (c) It can be shown, as in [Vi-81] or [AHU-69], that a set L is the range of an
honest function computed by a deterministic automaton with a one-way input head iff L is
accepted by a nondeterministic one-way automaton of the same type. [t was shown in [Su-
75a] that there is a language accepted by a one-way nondeterministic counter machine which
is complete for NLOG, and it was shown in [Su-75b| that there is a linear CFL which is
complete for NLOG. O

Theorem 4.10(a) improves a result in [Gr-78b|, where it was noted that the range of
any two-way DFA transduction is in NLOG, but it was left open whether or not every such
range was in fact in DLOG. Because of 4.10(a), we see that any class of machines which
allows two-way or even 3-crossing bounded access to the input includes machines which

compute functions which have inverses which are hard for NLOG. In addition, one-way

61

machines which have counters or reversal-bounded pushdowns for storage also can compute
functions with inverses which are hard for NLOG. We do not know if one-way machines with
reversal-bounded counters compute only functions with inverses in SC. If that were the case,
then it would follow that languages accepted by one-way nondeterministic machines with one
single-turn counter are in SC. A

In spite of Theorem 4.10, we are able to prove the following positive results:
Theorem 4.11:

(a) If fis computable by a one-way Turing machine with a worktape preset to length

loglog n, then fhas an inverse in SC.

(b) If fis computable by a one-way DFA, then f has an inverse computable by a two-

way DFA.
Proof: (a) The proof of part (a) is very similar to the proof of Theorem 4.3(b). Since there are
at most 20doglogn) = logOilln worktape configurations, there is no need to use
nondeterminism to choose among the possible computations. The details are omitted.

A corollary of Theorem 4.11(a) is that the class of languages accepted by
nondeterministic one-way loglog n space-bounded machines vis in SC. However, it was already
known that one-way alternating loglog n space-bounded machines accept only sets in SC [Su-
23] and that NSPACE (loglog n) C SC [MS-80}.

(b) For one-one functions, this was proved in [CJ-T7]. (See also [DKR-76, DKR-82].)
We will also use the fact that the range of any 1DFA transduction is regular [AU-721. Here,
we use the definition of [CJ-77| that a 1DFA transduction is only defined on the set of those x
such that the 1DFA ends up in an accepting state after scanning x.

Now let fbe any 1DFA transduction, computed by the IDFA M. Let M have q states.

Let C = {w| M, on input w, never makes g moves without producing output}. Note

that for all z € range(f), f~ 1(z) N C is a nonempty finite set. Cis regular.

62

There is a 1DFA transduction g such that the range of g is the set A = {w € C| for
some x € C, x = w, and flx) = Aw)}. The input to the transducer has w written on one track
and x written on aother track. w and x agree on some (possibly empty) prefix; w and x are
written one character per cell on that prefix. After that prefix, i.e., after the first cell in which
w and x differ, w and x are written so that, in any given cell, the same number of bits of output
have been produced by the 1DFA on the portion of w which has been seen as on the portion of x
which has been seen. The 1DFA can also check that at no point in the processing of wor x, g
moves are made without producing output; thus both w and x are in C.

Let us say that y (w iff either y is a proper prefix of w or w = wilwg and y = w0ys.
Clearly,y 2 w=>y{wor w(y.

There is a 1DFA transduction A so that the range of 2 is the set B = {w € A | for some y
€ A, lw) = fly) and y (w} The construction of the IDFA computing & is similar to that of the
1DFA computing g.

Let D = (C — A) U (A — B). Note that D is regular. We claim that|f~-W{(z) N D| = 1
for all z € range(p.

First note that f-1(z) N C is nonempty, and

f~UaNnC = f~NHIC-AUMANC)

I

f~Uzn({C - AUA)

(f~1=2N(C -ANU(f~-LNA)

i

ff~-1z) N (C = A) = D thenlet w € f~1(z) N (C — A). By definition of A, there is no
otherx.é Csuchthat Ax) = Aw) = z,s0lf~Uzx)NC| = |f[~Uz)N D| = L.

Iff~-Uz)N(C = A) = D, then f~Uz) N A = . Assume that|f-1(z) N (A-= B)| = 2;
let x and w be distinet elements in f~1(z) N (A — B). Assume without loss of generality that x {

w. But then w € B, which is a contradiction. Thus|f-1(z) N (A~ B} = L.

63

Assume that |[f-1(z) N (A-—- B)| = 0. Then for e.very x;in f-1z) N A thereisan x; 41 x;
in f-1(z) N A. (If there were no such x;41, it would follow that x; € B and thus x; € f-1(z) N
(A~ B).) But the existence of the sequence x, x2, ... contradicts the fact that f~1(z) N A C
f-1(2) N Cis finite. Thus|f-1(z) N (A— B)| = 1.

Now modify M so that it rejects if its input is not in D. The resulting 1DFA
transduction is one-one on D, and has range equal to range(f). By [CJ-77], the new 1DFA

transduction has an inverse computable by a two-way DFA. O

Classes of Circuits

The techniques used in the preceding sections also allow us to show that certain
interesting classesb of circuits compute only invertible functions. The circuit complexity
measures which have received the most attention are circuit size, depth, and width; see e.g.
[Pi-79] for definitions. The usual notion of circuit width allows each input to be available any
number of times at no extra cost. Although this definition of circuit width allows one to prove
appealing results [Pi-79], it is arguably less natural than the notion of width which allows
each input to be available only once. If we think of narrow circuits as being circuits of width
O(log n), where each input is available only once, the next result says that shallow circuits
compute inverses of functions computed by narrow circuits.

Theorem 4.12:

Let fbe an honest function computed by a family of circuits {C;} of polynomial size and

width O(log n), where each input is available only once in each circuit. Then there is

an inverse of fin NC.
Proof: The computation of such circuits is very much like the computation of one-way
logspace-bounded machines. The proof of Theorem 4.12 is very similar to the proof of

Theorem 4.3(b). N

64

It is worth noting that Theorem 4.12 is “uniform” in the sense that there is a single
polylog;time P-RAM which, given as input y and a suitably-encoded description of a circuit of
width & log n, will find an x such that the circuit maps x to y, if one exists. Contrast this with
the situation of depth-one circuits of linear size, indegree < three, consisting only of “or”
gates; it is easy to show that the problem of uniformly inverting functions computed by such
circuits is NP-complete, although we are unaware of any such functions having NP-complete
range. There are functions computed by depth-twe polynomial-size unbounded-fan-in circuits
having NP-complete range. Thus there seems to be no chance of proving é converse to

Theorem 4.12.

65

CHAPTERYV

Ranking Functions

Theorem 4.3 leads to unexpected results about ranking functions and census
functions. Given a language L, the ranking function for L is Ri(w) = |{x|x € L %nd xS wl.
The census function for L is Cr(n) = Ry (17) = the number of strings in L of length no more
than n. Census functions are considered in [HM-80, Ma-82]; they were helpful in proving that
no sparsé set can be NP-complete if P = NP.

We show that any language accepted by a machine in Cy, Cy or C3 has an easy
ranking function (and hence an easy census function).

Similar results about ranking functions were obtained independently by Goldberg
and Sipser [GS-85] in an investigation of classes of languages for which data compression is
possible. If a language has an easy ranking function, then it can be “compressed” maximally
in the sense that there is a one-one, invertible map taking L onto £*.

Theorem 5.1:
Let L be a language accepted by a machine in Cy, Co, or C3. Then Ry (n) is computable
in polynomial time.
Proof: Let L be accepted by a machine M in Cs, or C3. Let M’ be the machine constructed in
the proof of Theorem 4.1 which accepts the range of the function fcomputed by M. Let M bea
nondeterministic logspace-bounded Turing machine that, on input y, begins by marking off
log [y| on its worktape, and then simulating M’ on input 1 (so that M, will have an accepting

computation for every string x of length < |y| such that M outputs 1 on input x). In addition,

66

we require that M' accept only if the input string it “guesses” comes before y in the standard
lexicographic ordering. M, will have exactly one accepting computation for each string w < y
such that w € L.

Since M; is logspace-bounded, we can write down the polynomially-many
configurations of M; and mark each configuration which appears in an accepting
computation tree. In polynomial time, we can compute the number of accepting computatiens
which are rooted at any given configuration C: call this count(C). If C is an accepting
configuration (a leaf), there is one accepting computation rooted at C, so count(C) = 1. If C is
not a leaf then the number of accepting computations which are rooted at C is Z count(D)
where the sum is taken over all conﬁgurations D such that C =~ D.

Since there are no configurations C and D of M such that C —* D ~*C, the followiﬁg

procedure computes count for each configuration.

Compute a topological sort on the configurations, so that if D comes before C, it is
not the case that C —* D.

Compute count(C) for all configurations C, processing the configurations in
reverse order (so that if C - D, then D is processed before C).

If C is the initial configuration, then Ry.(y) = couné(C).

If L is accepted by a machine in Cy, we construct the machine M; from M’ exactly as
above. On input y#h(ly|), there will be exactly one accepting computation tree of M for each
string w < ysuch that w € L.

Since M; is logspace-bounded, we can write down the polynomially-many
configurations of My, and mark each configuration which appeuars in an accepting
computation tree. Let count be defined as above. If E is an accepting configuration (a leaf) of
M;, count(E) = 1. Each such configuration is attempting to verify that some pair (C,D) is a
realiiable pair, where the input and output head positions are the same in C as in D. For each
non-leaf configuration E of M| which is attempting to verify that (C,D) is a realizable pair

couniE) can be computed in the following way:

67

count:= 0

For each surface configuration A
If (C,A) and (A,D) are both realizable pairs, let Eq be the successor of E which
verifies that (C,A) is a realizable pair, and let Es be the successor of E which
verifies that (A,D) is a realizable pair.
count:= count + count(E)*count(Eq)

For each realizable pair of surface configurations (A,B)
IfC— Aviaapushof I"and B i~ C via a pop of I', let E| be the successor of E
which verifies that (A,B) is a realizable pair.
count := count + count(Ey)

Since there are no configurations C and D of My such that C —* D * C, the following

procedure computes count for each configuration.

Compute a topological sort on the configurations, so that if D comes before C, it is
not the case that C —* D.

Compute coun#(C) for all configurations C, processing the configurations in
reverse order (so that if C i~ D, then D is processed before C).

If C is the initial configuration, then Ry (y) = count(C). O

It is pointed out in [GS-85] that theré are some sets which are very easy to recognize
which have ranking functions which are hard for #P, and thus are as hard as any ranking
function for a set in NP. However it is tempting to speculate that there is some connection -
between the complexity of a set and the complexity of its ranking function.

For instance, every set in DLOG can be reduced by a one-one invertible logspace
reduction to a set recognized by a one-way logspace-bounded Turing machine [HM-81}. The
same proof technique shows that any set which is recognized by a deterministic AuxPDA
which moves its input head nO(times can be reduced by a one-one invertible logspace
reduction to a set recognized by a one-way deterministic AuxPDA. (The class of sets
recognized by deterministic AuxPDA’s which moves their input heads a0l times is the P-
uniform analog of the Sudborough’s class log(DCFL) [Su-78{. More is said on this subject in
Chapter 6.) By Theorem 5.1, any set in either of these classes is reducible via a one-one
invertible logspace reduction to a set with an easy ranking function. We suspect that the

same is not true for every set in P.

68

A number of results have been proved which point to a sort of “duality” which exists
between SC and NC. The following result points to a different aspect of that duality.
Theorem 5.2:

Every set in SC can be reduced by a one-one invertible logspace reduction to a

- set with a ranking function which can be computed in time nlog®n,

Every set in PUNC can be reduced by a one-one invertible reduction which

can be computed in logOtlin space to a set with an easy ranking function.
Proof: Every set in SC can be re‘duced by a one-one invertible logspace reduction to a set
accepted by a real-time, logOtln space-bounded Turing machine with a one-way input tape
[Su—831. Ranking functions for sets accepted by such machines can be computed in time
nlog®¥n via a straightforward extension of the method of Theorem 5.1.

Also, every set in SC can be reduced by a one-one invertible logspace reduction to a set
accepted by a one-way loglogspace-bounded alternating Turing machine [Su-83]. Ranking
functions for sets accepted by one-way loglogspace-bounded alternating Turing machines can
be computed in time niog®"n, by a combination of the methods of Theorem 5.1 and Theorem
4.11.

Every set in PUNC can be reduced to a set accepted by a one-way deterministic
AuxPDA, using the same techniques as were used in [Su-83], where two-way computations
are reduced to one-way computations. The reduction is one-one and can be inverted in
polynomial time, and can be computed in log®'Dn space. The length of the output of the
reduction on inputs of length n is nlog®t'n, 0

We suspect that no set which is complete for P has a ranking function which is
computable in subexponential time, although we have been unable to find very convincing

evidence to support this suspicion.

69

It should be noted that p-isomorphisms do not preserve the property of having an easy
ranking function. Recall that a setisa p—cylindér iff it has an easy padding functidn. All p-
cylinders in P are p-isomorphic [Y0-83]. Let A be any set accepted by a one-way logspace-
bounded machine such that both A and its complement have padding functions; for instance,
let A = 1{0,1}*. Let B be any set with a hard ranking function: for instance let B be the set
given in [GS-85]. Then the set C = {x#y|x € A and y € B} is p-isomorphic to A, but has a hard

ranking function; Rg(y) = Rc(1#y) — Rc(1#0b) + X; < 1) (Rc(1#1) — Rc(1#0)).

70

CHAPTER VI

The Complexity of Sparse Setsimm P

Theorem 3.7 showed that the complexity of sets in PUNCC is closely tied to the
complexity of the class of tally languages in P. Tally languages ha ve often bee<n studied in
conjunction with sparse sets, and it natural to investigate the comple=ity of sparse sets in P in
relationship to the complexity of sets in PUNC.

One subclass of the sparse sets in P, the P-printable sets, is of particular interest in
this regard. P-printable sets were defined in [HY-84]; a set S is P-pr3intable iff the function n
— {w € S| n = |wl|} is computable in polynomial time. The P-printzable sets are “effectively
sparse” in the sense that it is easy to find all of the elements of S of a given length. It is
believed that not all sparse sets in P are P-printable; in this section we2 present some sufficient
conditions for the existence of sparse sets in P which are not P-print. able. We also present a
new characterization of the P-printable sets.

Since all tally languages in P are in PUNC, it is natural to a_sk if all sparse sets in P
are in PUNC. There seems to be no reason to believe that is the case. We note that the
existence of a sparse set in NP but not in PUNC implies P=NP.

The.orem 6.1: EXPTIME = NEXPTIME & all sparse sets in NP a;re L n PUNC.
Proof: (&) If all sparse sets in NP are in PUNC, then all tally laraguages in NP are in P,
which implies that EXPTIME = NEXPTIME by [Bo-74/.

(=) In [HY-84] it was shown that EXPTIME = NEXPTIMED implies that all sparse

sets in NP are P-printable. But all P-printable sets ure clearly in PUMNC.]

71

The proof of Theorem 6.1 gives one context in which P-printable sets arise. They also
arise in the study of data compression. Sparse sets are clearly good candidates for data
compression, as studied in [GS-85]. However, the only general deterministic technique for
data compression which was isolated in [GS-85] involves using ranking functions, as
discussed in Chapter 5. It is easily shown that the sparse sets with easy ranking functions are
precisely the P-printable sets.

P-printable sets are also closely related to concepts which were discussed in Chapter
3. For instance, every P-printable set gives rise to a P-printable sequence, and vice-versa. P-
Uniform circuits are therefore also closely-related to P-printable sets.

The only sparse sets which are easily shown to be in PUNC are the P-printable sets. It
is reasonable to ask if, in fact, all sparse sets in PUNC are P-printable. Although we are ﬁot
able to answer that question (and we do not believe even that all sparse sets in DLOG are P-
printable), we can come close; we are able to give the following machine-based
characterization of the P-printable sets.

Theorem 6.2:

L is P-printable iff L is sparse and L is accepted by a nondeterministic one-way

logspace-bounded AuxPDA.

Proof: (=») Assume that in time polynomial in n one can enumerate the elements of L of
length < n. Then, just as in the proof of Theorem 3.1, a logspace-bounded AuxPDA can obtain
the bits of that enumeration one-by-one. Thus a one-way nondeterministic AuxPDA can
guess the length n of the input, guess that the input is the r-th string to appear in the
enumeration, and then obtain the bits ‘of the enumeration one-by-one and check that the
input agrees with the r-th string in the list.

(We note that the result can be made stronger, in that a deterministic one-way

AuxPDA with log n space marked out on its worktape can accept L, as can a deterministic

72

- one-way AuxPDA which accepts in logspace all inputs in L, but may use unbounded space for
inputs notin L.)

(&) Let L be a sparse set accepted by a nondeterministic one-way logspace-bounded
AuxPDA M. Let M’ be the alternating Turing machine constructed in the proof of Theorem
4.3. Let M; be the alternating machine which on input 0n#h(n) marks off log n space on its
worktape and simulates M’ on input 1#hA(n). Each accepting computation tree of M;
corresponds to a string x € L of length < n. There are at most nO(1) such strings x.

Unfortunately, since M is nondeterministic, each string x may correspond to many
accepting computation trees of M. Thus we cannot examine each accepting computation tree
in nO(D time.

Since M; is logspace-bounded, we can write down the polynomially-many
configurations of My, and mark each configuration which appears in an accepting
computation tree. Now consider a configuration E which verifies that (C,D) is a realizable
pair; let ic and ip be the input head positions of M represented in C and D, respectively. Each
accepting subtree rooted at E corresponds to a substring which appears in positions ic through
ip in some string of length nin L. Although the number of accepting subtrees rooted at E may
not be polynomially-bounded, the number of corresponding substrings is polynomially-
bounded, and a dynamic programming algorithm can be used to associate that set S(E) of

strings with E.
S:=J

For each surface configuration A
If (C,A) and (A,D) are both realizable pairs, let E| be the successor of E which
verifies that (C,A) is a realizable pair, and let E9 be the successor of E which
verifies that (A,D) is a realizable pair.
S:= S USE;)XS(Ep)

For each realizable pair of surface configurations (A,B)
[fC + Aviaapushof ["and B C via a pop of [, let E{ be the successor of E
which verifies that (A ,B) is a realizable pair.
S:=SUSEp

73

Since there are no configurations C and D of My such that C —* D —* C, the
computation outlined above can proceed very much in the same manner as in the analogous
algorithm in Theorem 5.1. N

Theorem 6.2 is interesting because one-way AuxPDA’s are not very powerful
machines; in [Br-77a], counting arguments were used to show that some relatively “natural”
languages in P are not accepted by one-way AuxPDA’s of sublinear space complexity.
However, any argument showing that no one-way AuxPDA accepts some sparse set in P (or
even in PSPACE) is also strong enough to settle several outstanding problems in complexity
theory, since e.g. P=PSPACE = all sparse sets in P are P-printable.

Corollary 6.3:

EXPTIME = NEXPTIME ¢ all sparse sets in NP are accepted by one-way logspace-

bounded AuxPDA’s.

Proof: Immediate from Theorem 6.2 and the proof of Theorem 6.1. O

In [Su-78], Sudborough investigated the classes log(DCFL) and log(CFL), the classes
of languages logspace-reducible to (deterministic) context-free languages. He showed that
log(DCFL) and log(CFL) are the classes of languages accepted by deterministic and
nondeterministic logspace-bounded AuxPDA’s in polynomial time, respectively. It is not
known if every sparse CFL is in log(DCFL). (Note that Ruzzo showed in [Ru-81] that every
CFL, and in fact every set in NC, is accepted by a deterministic logspace-bounded AuxPDA in
time 2log%V'n)

The class of languages accepted by deterministic (nondeterministic) logspace-bounded
AuxPDA’s which move their input heads at most nOtD) times is the P-uniform analog of the
class log(DCFL) (log(CFL)). By Theorem 6.2, every sparse set accepted by a one-way
nondeterministic AuxPDA can be accepted by a deterministic AuxPDA whieh moves its input

head O(n) times.

74

The question of whether or not sparse sets in P exist which are not P-printable is
related to the question of whether or not one—way‘functions exist.
Theorem 6.4:

If there is a P-printable set S and an honest one-one function f which is computable in

pqunomial time but is hard to invert on S, then f—1(S) is a sparse set in P which is not

P-printable.
Proof: Let fand S be as in the statement of the theorem. If the functionn — {x € f~1(S)|n =
|x|} were computable in polynomial time, then given any element y € S, f~1(y) could be
computed on S by writing out {x € f~1(S) | p(ly}) = |x|}, applying fto each element of {x € f-1(S)
| p(yD) = |x]}, and seeing if any x maps to y. Thus f would be easy to invert on S, which is a
contradiction. O

If the set S in the stéternent of Theorem 6.4 is in DLOG and f is computable in
logspace, then f—1(S) € DLOG.' We conjecture that sparse sets exist in DLOG which are not P-
printable.

The existence of sparse sets in P which are not P-printable does not seem to imply the
existence of one-way functions; that is, the converse to Theorem 6.4 does not seem to be true.

In [Va-76], Valiant addressed the question of whether or not “evaluating” was harder
than “checking.” This has also been discussed in, e.g., [Li-85]. One aspect of the evaluating
~vs. checking question has relevance to the topics covered in this chapter. Let a sequence sy,
S9,... be easy to evaluate if the function n — sy, s9, ... s, can be computed in polynomial time,
and let it be easy to check if the set {s;#so# ... #s, | n = 1} is in P. (Note that the set {s#so#
.. #s,| n = 1} is a set of strings which encode the first n elements of the sequence. This is
different from requiring that the set {sy, s2, ... s,| n = 1} is in P.) To avoid the possibility that
a sequence could be easy to check but hard to evaluate for trivial reasons, we also require that

|sa| = nOD for all n.

75

Theorem 6.5:

There is a sequence which is easy to check but hard to evaluate &

there exists a polynomial-time computable function which is honest, one-one, and

hard to invert on a P-printable set.

Proof: (=) Let s, s, ... s, be easy to check but hard to evaluate. Then the function Ax) = 07 if
x = s|#sg# ..#s,, and fx) = lx is one-one, honest, and computable in polynomial time.
Inverting fon 0* is equivalent to evaluating the sequence s, s9, ... 5,.

(&) Let f be a polynomial-time computable function which is honest, 6ne~one, and
hard to invert on a P-printable set {sy, s2, ... s, | n = 1}. The sequence f~1(sy), f-1(s9), ... is
easy to check; given input ¢y #to# ... #t,, simply compute fl¢;)#/t2)# ... #f(¢,), and compare the
result against sy #so# ... #s,. This is easy since {s, s9, ... 5, | n = 1} is P-printable. If f—1(sy),
f; L(sg), ... were easy to evaluate, then, just as in the proof of Theorem 6.4, f~1 would be easy to

evaluate on {51, 9, ... s, | n = 1}. 0

76

CHAPTER VII

Precomputation

In Chapter 3, we presented a characterization of PUNC in terms of general-purpose
parallel computers, such as StMDAGs, which are augmented with a P-printable sequence.
The P-printable sequence is used to provide the SIMDAG with access to information which
has been precomputed. In this chapter we investigate using P-printable sequences to model
precomputation in other settings.

When augmenting a space-bounded computation with precomputed information, it
makes sense to bound the length of that information. That is, if one wants to store a table of
precomputed information which will help in evaluating a funetion on all inputs up to some
Ie;lgth n, it may well be that considerably less than n memory locations are going to be
available to store the table; thus one would want to investigate using a smaller table. Here,
we will consider what the proper way is to model supplying only a small number of
precomputed bits.

We first present one answer to this question, then show that it is not satisfactory, and
then present a new answer and show that characteristic sequences again give an elegant
characterization of precomputation.

Computations augmented by short strings of “nonuniform” data were studied in [KL-
821, as a generalization of nonuniform circuit complexity. The principal difference between

the definitions of [KL-82] and the definitions considered here is that the "advice” bits of [KL.-

17

82] did not need to be effectively or efficiently constructible. Here, we are trying to model
feasible precomputation.

Translating directly from the definition of PUNC, and borrowing from the notation of
[KL-82], one can formulate the following definition.

Definition A: SC/feasibles-O(logkn) ‘is the class of all languages L such that there is a
function n—h(n) computable in time polynomial in n, where |A(n)| < llogkn + [for some [, and
there is some language L' € SC such that for all strings w, w#h(|w|) € L’ iff w € L.

The problem with definition A is that the precomputed help A(n) is only required to
work for inputs of length n. A table storing help for all input lengths < n would thus need to
be of length at least n, whereas we would like for such a table to be small: of length logOtDn.
That motivates the following definition.

Definition B: SC/feasible-O(log%n) is the class of all languages L such that there is a function
n—>h(n) computable in time polynomial in n, where |h(n)| < [logtn + [for some [, and there is
some language L’ € Sé such that for all strings woflength = n, w#h(n) € L' iff w € L.
Conjecture: {07 | n € U}is in SC/feasiblea-O(logkn) but not in SC/feasible-O(log#n).

A Turing machine augmented with O(f(n)) bité of sequence s is a Turing machine with
the first An) bits of the sequence s written on one of its worktapes.

Let Vi, = {M(00)s1w| M accepts w in time 22°*“'"*} where the encoding of machines M
is such that no encoding contains “00” as a substring. (Any set which is complete for
DTIME(22"*) under polynomial time reductions f such that [Ax)] = |x| + O(1) can be
substituted for V) The first O(log#n) bits of sy, may be obtained in time nO(L. (To obtain the
r-th bit, see if r € V in time 202"%: for r < [logkn +/, |rl/k < loglog n + O(1), and thus this

takes time nO(L)

78

Theorem 7.1:

L is in SC/feasible-O(log#n) iff L is accepted in polynomial time and logO{Ln space on a

Turing machine augmented with O(logkn) bits of sv,

Proof: (<) Let L be accepted in polynomial time and logO()n space on a Turing machine
augmented with llogkn + [bits of sy,. Let h(n) be the first [logO‘Lin + [bits of sy, [t was
observed above that n—h(n) is computable in time polynomial in n. It is now easy to construct
the desired language L’ in SC.

(=) Let |h(n)| = llogkn + [. The language L; = {x| log({(log2¢-1% + [+ 1) < | <
log({(log29)k + [+ 1), x = 0t1r for some i = 0, and the r-th bit of ~(29) is 1} can be recognized
in time (29)0(1) = (22")0(1; let M recognize L in time 22°*""*. To recognize L, on input w
simulate the SC machine accepting w#h(29), where 2¢—-! < |w| < 29. To obtain the r-th bit of
h(29), set x = 0ilr where |x| = log(llogklw| + [+ 1), and consult the M(00)s1x-th bit of SV,
Because [x| is small, no more than O(log#n) bits of sy, need to be consulted. O

The significance of Theorems 3.6 and 7.1 is that there is a single “universal” sequence
of advice bits which can be used to model all feasible precomputation. This should be
constrasted with the case of nonuniform advice of the sort studied in [KL-82]. For instan;:e,
let L be a language in P/poly, the class of languages (defined in [KL-82}) which can be solved
in polynomial time relative to "advice bits” for inputs of length n, where the length of the
advice is bounded by a polynomial in n. Equivalently, let L be accepted by a nonuniform
family {C,} of circuits of size polynomial in n. Then there is a set which can not be accepted in
;my amount of time relative to {C,;}: namely any set whichisnotr.e. in {C, | n € N}. Thus there

is no “universal” sequence of nonuniform advice bits.

79

We note in concluding this section that Turing machines augmented with sequences
can also be used to characterize PUNC in terms of sequential computation; a language L is in
PUNC iff L is accepted in time nO1) and reversal logO(l)n by a Turing machine augmented

with sy [Pi-79].

80

CHAPTER VIII

The Structure of Complete Sets

The results of Chapter 4 about invertibility, combined with the results of Chapter 5
about ranking functions, enable us to prove some results about the structure of complete sets.

1-L reductions, which are functions computable by logspace-bounded Turing
machines which have a one-way input head, were introduced in [HIM-78] as a tool for
determining relationships between complexity classes which are too fine to be detected using
Karp reductions or logspace reductions. For example, there are natural sets which are
complete for DLO-G under 1-L reductions, whereas it makes little sense to speak of sets
complete for DLOG under logspace reductions. It is observed in [HIM-78] that most NP-
complete problems which have appeared in the literature (in fact, al of the “natural” NP-
complete problems which the authors of {HIM-78] considered) are complete for NP under 1-L
reducﬁons. (It is easy, however, to construct a set p-isomorphic to SAT which is not complete
under 1-L reductions {HIM-78].)

In [HM-81] it is shown that no set complete under 1-L reductions can be sparse. We
greatly improve on that result; we show that all such sets are “almost” p-isomorphic.

(As defined in [HIM-78, HM-81], 1-L reductions are corﬁputed by machines which
begin the computation with logspace marked off on their worktapes. We will use that
definition in this section.)

In Chapter 1 we reviewed work relating to the Berman-Hartmanis conjecture that all

NP-complete sets are p-isomorphic. [n particular, we saw that a set is p-isomorphic to SAT iff

81

it is complete for NP under one-one, length-increasing, invertible Karp reductions. In[Yo0-83,
JY-85], sets are presented which are complete under one-one length-increasing (but
presumably non-invertible) reductions, and which seem not to be p-isomorphic to SAT. The
result below shows that sets complete under 1-L reductions are complete under length-
increasing, invertible and "almost” one-one Karp reductions, and thus they are "almost” p-
isomorphic. Showing that they are in fact p-isomorphic could be a first step toward showing
that the Berman-Hartmanis conjecture fails only if one-one one-way functions exist.

A function g will be said to be a strong inverse of fif g(y) = {x| Ax) = y}. If gis easy to
compute, we say that f is strongly invertible. Note that if f is strongly invertible, then f is
almost one-one, in the sense that for some polynomial p, [{x| Ax) = y}| = p(y).

Theorem 8.1:
Let A be complete for NP (or DLOG, NLOG, P, etc) under 1-L reductions. Then A is

complete under length-increasing, strongly-invertible Karp reductions.

In order to prove this theorem we will need to prove a series of lemmas.
L.emma 8.2:
There is a set SAT’ p-isomorphic to SAT such that w € SAT' = |w| is a power of 2 and
lw] > 1.
Proof: Let SAT' = {x10r -1 | r = 2tloglxs + 1 — |x]}. Clearly SAT <p;rp SAT’, and thus SAT
and SAT’ are p-isomorphic, O
In what follows, let A be a given set which is complete for NP under 1-L reductions, let
B = {w2lwl| w € SAT'}, and let fbe a 1-L reduction computed by a machine M, where freduces
BtoA.

Lemma 8.3: There is a p-printable set S containing all w € SAT' such that |fw2lwl)| < |w|.

82

- Proof:

On input n, the following routine prints a list containing all words w € SAT' such that

|[Aw2lwh)| < |w| < n.

begin
for m:= 1to Llog nJ //Print all such w with |w| = 2m,
. (1) Create a labelled digraph G=(V,E) with V being the set of all configurations of M

of size 1 + 2m (= loglw?2lwl, if |w| = 2m), and E containing an edge labelled @ € £ U

{} from C; to C; iff M has a move C; - C; which consumes input a and produces no

output. (The label [, of a path p in G is the concatenation of the labels of its edges.)

(2) for each configurationC; € V
Make a copy G;of G
By doing a breadth-first search of G; starting at C;, find and mark those edges
which can be traversed by a path p from C;, where |[,| = 2m.
Delete all unmarked edges and all vertices which are not connected to C; by a
marked path.
foreachC;inG;
if there are two paths from C; to C;, mark C;
Delete all marked vertices. (G; is now a tree, since for every C; in G;, there is
exactly one path from C; to C;.)
foreach C;in G;
if the path p from C; to C; has |{,| = 2m, put [, in TEMP
for each w € TEMP
if |Alw2lwh)| < |wl, output w.
end

To see that the routine is correct, let w be any word in SAT’ such that |Aw2luwl)] < |w|.
We need to show that the routine outputs w on input n = |w|.

On input w2lwl, M outputs a string of no more than |w| bits. Thus there must exist
some r < 2|w| such that after reading wr, M produces no output while reading the r+ 1-st w.
Let C; be the configuration M enters after consuming wr, and let C; be the configuration M
enters after consuming wr+1.

Let us assume that the routine does not output w. Then there must be some path p in
G, from C; to C;, with i(p) = x = w. Note that without loss of generality, [x| < |w], since all

edges corresponding to words of length > |w| are deleted before we check for duplicate paths.

83

Consider M’s computation on input wrxw?2lwl-r—1_ In order to determine M’s initial
configuration, we must calculate lNog [wrxw2lwl-r—1|1. Since w € SAT’, |w| = 2m for some m
> 0. Thus

2m + 1 = llog2m(2m+1 . 1)1 = log 22m+1 _ 2m]

Il

Nog 2|w|2 — |w|1

A

Mog 2|w|2 — |w| + |x|1

< log 2lw|27 = 2m + 1.
That is, M’s initial configuration is the same on input wrxw?2lwl-r-1 as on input w2lwl. Thus on
input wrxw?lwl-r—1 M enters configuration C; after reading wr, enters C; after reading x
without producing any output while reading x, and then finishes the computation, reading
w2lwl-r=1. Thus M produces the same outpﬁt on input wrxw2lwl-r~1 as on input w2lwl; thus
Awrcw?lwl-r-1) = fw?2lwl) and wrxw?lwl-r-1 € B, since w2lwl € B. Thus wrxw2lwl-r—1 = y2bi
for some y € SAT’. Since |x| = |w|, , we must have |y| < |w|; however, |y| = |w| implies y = w =
x, which contradicts x # w. Thus|y| < |wl; however |y| < |w| implies [y] < 2m-1, which implies
ly2bl| = 22m-1 < 22m+1 — 2m < |wrrw2lwl-r-1|, which contradicts wrxw?lwl-r-1 = y2bl.]
Lemma 8.4: There is a polynomial ¢; such thaty € A = |f-1(y) N ¥ < g(n) for all n.
Proof: Note that since y € A, we have that f~1(y) C B. We thus have [f-1(y) N 7| = 0 < g(n)
unless n = 22m+1 for some m. If n = 22m+1 we may write f~1(y) N En = {x,2m xo2m _ x2m}
for some r = 0.

M, in its computation on x;2m, reaches a point when it has consumed the first x| of the
input, has output some prefix y' of y, and is in some configuration C;. We will assume without
loss of generality that M keeps track on its worktape of the number of input symbols it has
scanned, and thus |xy] is recorded in C;.

" Since flx;2m) = yforalli, 1 = i = r, M reaches a point in its computation on each x;2m

when it has scanned some prefix x;" of x;2m, has output y’, and is in some configuration C,.

84
IfC; = C;, then
(1) |x’| = |x/|, since M keeps track of the number of input symbols it has
consumed.
(2) Moutputsyon input x;'x;"’, where x;2m = x;'x;"". Note that |x;'x;"'| = n.
(3) x;'x;'" € B,and thus x;'x;"" = xp2m for somek, 1 S k < r.

Since |xx] = m = xp2m| = 3lxi'x;"'|, xp is either a prefix of x;’, a suffix of x;"’, or both. Thus i =
k=j. Thatis,C;=C; =i =.

Thus r is less than or equal to the number of configurations of M on inputs of length n.
Since M is a logspace-bounded machine, this number can be bounded by some polynomial q;.

O

Lemma 8.5: Let préimage(y) = {x| flx) = y and || < |y|}. Then |preimage(y)| can be computed
in time polynomial in |y|, and preimage(y) can be computed in time polynomial in (Jy] +
|preimage(y))).
Proof: This is a straightforward generalization of Theorem 5.1, and can be proved using
similar techniques.
U

By Lemma 8.4, there is a polynomial q such that if x € SAT’, then |preimage(Ax2/))|
< q(la)).

We are now ready to define a procedure which computes a function g which we claim
is a strongly-invertible, length-increasing, polynomial-time reduction of SAT' to A.

Sinee SAT' is p-isomorphic to SAT, there is a one-one, length-increasing, invertible
padding function p such that p(x,y) € SAT’ iff x € SAT'. Let T be some trivial element of SAT",
Let al(x) be the string which differs from x2/xl only in the rightmost bit. Let rejectable(x) and

trash(x) be defined by the following procedures.

35

rejectable(x)
begin
if [|x] is not a power of two greater than 1] or
[x € S and |Ax2D)| < |x|] or
[|preimage(Az2l))| > q(|x)] or
[lpreimage(Ax2l))| =< q(|x]) and there is some element of preimage(Ax2))) which is not
of the form y2bl]
then
return true
else
return false
end

trash(x)
begin
let y be the least such that p(T,x#y) ¢ S

return fla(p(T,x#y)))
end

The function g is computed by the following routine.

gx)
begin
if rejectable (x)
then
g(x) = trash(x)
else
ifx€S8
then
g(x) = fx2lxl)
else
let y be the least such that p(x,y) ¢ S
if rejectable (p(x,y))
then
g(x) = trash(x)
else
g(x) = flp(x,y)2lptxyi)
end

Lemma 8.6: The routine presented above computes g in polynomial time.

Proof: This is immediate from Lemma 8.5, except for verifying that the operation “let y be the
least such that p(x.y) € S” can be computed in polynomial time. Since S is sparse, at most
%01 elements of p(x,2*) need to be examined in order to find some y such that p(x,y) € S.]

Lemma 8.7: g is a length-increasing reduction of SAT’ to A.

86

Proof: If x is in SAT’, then rejectable(x) is false, and x2lx| € B, and {Ax2ll), Ap(x,y)2l=l) | y €
£*} C A. If, in addition, x € S (or p(x,y) € S) then |g(x)] = |Ax2kD)| > |« (or |Ap(x,y)2p=0)| >
lpCe,y)| >).

If x is not in SAT’, then if rejectable(x) is true, g{x) = Aa{p(T,x#y))), which is not in A
since a(p(T,x#y)) is not of the form z2lzl, and hence is not in B. Since p(T x#y)2pT.x#y| € B,
and p(T,x#y) € S, M outputs at least one bit while processing each copy of p(T,x#y) on input
p(T x#y)2lTx#y)l. Since a(p(T,x#y)) differs from p(T,x#y)2(Tx#y)| only in the rightmost bit,
it follows that |Ra(p(T,x#y))| > |p(T x#y)| = |«|.

If x is not in SAT' and rejectable(x)‘ is false, then since x is not in SAT’, x2lx ¢ B, and
Aplx,y)2letxyly € B for all y. That g is length increasing and g(x) € A follows by an argument
similar to that in the preceding paragraph. , 0
Lemmé 8.8: g is strongly-invertible.

Proof: The foll.owing procedure computes the strong inverse of g.

inverse(y)
begin
if |preimage(y)| < q(|y)
then
compute preimage(y)
for each w in preimage(y)
if w is of the form x2ixl and g(x) = y
then
put x in LIST
if w is of the form p(x,u)2lp(x.w)l and g(x) = y
then
put x in LIST
if wisof the form a(p(T, <x,u>))and g(x) = y
then
put x in LIST
else
for each prefix y’ of y
for each configuration C of M of length < Tlog|y|1
for each s € {0,1}
let y¢ s be the string which M outputs when in configuration C with s¢
remaining on the input tape
if|preimage(y’yc)l < qlly'yc o)
then
compute preimage(y’ ycs)

87

for each w in preimage(y'yc 5)
if wis of the form p(T,x#u) and g(x) = y
then
put x in LIST
output LIST
end

To see that the routine is correct, note that if g(x) = y, then either [g(x) = Ax2Mx) and

|preimage(flx2l)| < q(x)) =< q(lyD] or [g(x) = Ap(x,u)2pixwl) and |preimage(g(x))| = q(x|)

IA

q(yD] or [g(x) = Ra(p(T,x#y))). Clearly, the only difficulty arises in the case glx) =
Ra(p(T x#y))).

If g(x) = fa(p(T,x#y))), then g(x) = y'z, where M outputs y’ before reading the final
input character. The routine tries all prefices y’ of y and generates all strings z which M could
possibly affix to y’, and then checks to see-if p(T,x#u)2lp(Tx#w] € preimage(y'z) for any u.

[t is clear that the running time is polynomial. O
Proof(of Theorem 8.1): Immediate from Lemmas 8.2 through 8.8. O

Given a set L which is complete under one-one 1-L reductions (which are not known to
be honest), Theorem 8.1 shows that L is complete under length-increasing, invertible
functions which are not necessarily one-one, and are thus not necessarily LIFP. The next
result shows that such languages L are in fact complete under LIFP reductions.

Theorem 8.9:
Let A be complete for NP (or DLOG, NLOG, P, etc) under one-one 1-L reductions.
Then A is complete under LIFP reductions.
Proof: The function g constructed in the proof of Theorem 8.1 fails to be one-one, since for
certain strings x and y we can have g(x) = g(p(x,y)) = flp(x,y)2Pxy) The function g’ computed
by the following routine avoids such behavior.
g'(x)
begin
if rejectable (p(x,0))
then

g'(x) = trash(x)
else

88

ifx ¢S
then
g'(x) = fp(x,0)2lptx.0)
else
let y be the least such that p(p(x,y),1) ¢ S
if rejectable (p(p(x,y),1))
then
g'(x) = trash(x)
else
g'(x) == ﬂp(p(x’y)’l)zlp(p(x,y),l){)
end
For all strings x, either g'(x) = fa(p(T x#y)), g'(x) = fp(x,002p=00), or g'(x) =
fp(p(x,y),D)2lp(pz.).1) for some y. Since fis one-one, and since for all z = x and all ¥1, ¥2, ¥3,
and yq4, {a(p(Tx#y1)), p(x,002P=0l, plp(x,y2), 2Py L} N {a(p(T,2#y3)), p(z,0)2lpz0),
p(p(z,y4),D2pPzy) D} = &, g’ is one-one. The proof that g’ is length-increasing and

invertible is the same as in the proof of Theorem 8.1 | O

For lérger complexity classes, Theorem 8.9, together with the techniques of [Be-77]
(see also [Do-82, Wa-85]), yield a stronger result.

Theorem 8.10:

All sets complete for PSPACE (DTIME(2tin), DTIME(2poly), DSPACE(2!in), ete.) under

1-L reductions are p-isomorphic.

Proof: We prove only that all sets complete for PSPACE under 1-L reductions are p-
isomorphic. The results for other deterministic classes can be proved similarly. This proof is
based on the techniques of [Wa-85].

Let My, Mg, ... be an indexing of all 1-L machines, and let A be any set complete for
PSPACE under 1-L reductions. Let QBF be the set of all satisfiable quantified Boolean
formulae; QBF is complete for PSPACE under one-one 1-L reductions [HIM-78].

Consider the set S accepted by a Turing machine M which performs the following

computation:

On input z of length n, mark off nZ space.

If z is not of the form i#x#y 10!, halt and reject.

Run M; on input z. (Do not store the output of M;, but do record how much output M;
produces on input x.) If more than n? space is required, halt and reject.

89

For all u#v such that u#v < x#y
Run M; on input i#u#v10!. If more than n2 space is required, halt and reject.
Compare the output of M; on input i#u#v10! with the output of M; on input
i#x#y10L. (This comparison can be done bit-by-bit, so that the entire output
doesn’t need to be stored all at one time.)
If the output of M; on input i#u#v10! = the output of M; on input i#x#yl0L
Then
Halt and accept iff u € QBF
Endfor
(If the computation reaches this point, there is no u#v < x#y such that the output of
M; on input i#u#v10! = output of M; on input i#x#y10.)
Halt and accept iff x € QBF.

Clearly, S € PSPACE. Thus there is some 1-L reduction computed by some machine
M; reducing S to A. There is some constant r such that for all strings x and y, M can carry out
the simulation of M; on input i#x#y107 in n2 space. If w = the output of M; on input i#x#y10r
= the output of M; on input i#u#v10r for some u#v = x#y, then let u#v < x#y be the
lexicographically smallest two strings which map to w in that way. Then w € A iff i#u#v10r
€ Siff u € QBF, and w € A iff i#x#y10r € S iff u € QBF. This is a contradiction. Thus the
function f which takes x#y to the output of M; on input i#x#y10r is a one-one function. Also, f
is computable by a 1-L machine. Furthermore, i#x#y10r€ S iff x € QBF, and thus Ax#y) € A
iff i#x#y107€ S iff x € QBF. That is, fis a 1-L reduction from QBF#Z* to A. The function f
need not be honest, however.

Since QBF is complete for PSPACE under one-one 1-L reductions, it follows that
QBF#X* is complete for PSPACE under one-one 1-L reductions. Since the class of 1-L
reductions is closed under composition [HIM-78}, it follows that A is complete for PSPACE
under one-one 1-L reductions. By Theorem 8.9, A is complete for PSPACE under LIFP
reductions, and hence A is a p-cylinder. O

Let us say that the Berman-Hartmanis conjecture is very false if there are sets
complete for NP under 1-L reductions which are not p-isomorphic. It is known that if the
Berman-Hartmanis conjecture is true, then P = NP (since if P = NP then finite sets are NP-

complete). It follows from Theorem 8.10 that if the Berman-Hartmanis conjecture is very

90

false, then NP = PSPACE. We refrain from conjecturing that the Berman-Hartmanis
conjecture is very false.

In[Yo-83], Young posed the question of whether the Berman-Hartmanis conjecture is
true iff one-one one-way functions do not exist. A possible first step toward answering this
question would be to show that all sets complete for NP under length-increasing, strongly-
invertible reductions are NP-complete. We have been unable to show that this is true, even
with the additional assumption that the reductions under consideration never map more than

two different strings to the same output.

91

CHAPTER IX

Conclusions and Open Problems

Invertible Functions

There is é certain minimal amount of computational effort which must be put into the
computation of a function, if that function is to be hard to invert. Using the concepts of
machine- and circuit-based complexity theory, we have attempted to define as precisely as
possible the boundary separating classes of computing devices computing only functions
which are easy to invert from classes which compute one-way functions. Among the theorems
obtained through this investigation are results which show that functions computed by
narrow circuits have inverses computed by shallow cireuits, as well as results which show
that machines with powerful storage structures but limited access to the input compute only
easy-to-invert functions, as do machines with unlimited access to the input but only weak

storage facilities.

P-Uniform NC

‘The functions which we show to be easily invertible have inverses which can be
computed very quickly in parallel; thus it is unlikely that such functions are hard for P. In
order to prove results about the parallel complexity of inverting functions, it was necessary to
define a new complexity class, PUNC. Several arguments were presented which support the
claim that PUNC models the notion of “feasible parallelism” more successfully than NC,

which has been the focus of most complexity-theoretic work on parallelism.

92

A number of different equivalent characterizations of PUNC were presented in
Chapter 3. PUNC can be defined in terms of P-uniform circuits or in terms of alternating
Turing machines or AuxPDA’s which have limited access to the input. PUNC also has a
natural characterization in terms of general-purpose parallel computers.

Other work relating to PUNC remains unfinished. For instance, we believe that a
number of theorems in complexity theory can be stated and proved more easily in the context
of PUNC than in terms of logspace-uniform families of circuits; doing so has been left to
future work. Also, an interesting question is whether or not Pippenger’s characterization of
NC in terms of time- and reversal-bounded Turing machines can be modified to give a
characterization of NC in terms of time- and R-bounded Turing machines, for some “natural”
resource R. It is interesting to note in this re_gard that one-way AuxPDA’s have been studied
in the past in relation to a “return” complexity measure which is similar in some ways to

reversal [BR-77b, Ch-77, We-79, We-80]

Sparse Sets

The study of PUNC has given rise to a number of interesting questions and results
about sparse sets in P. A machine-based characterization of the P-printable sets was
presented in Chapter 6, and the implications of that characterization were explored. [t was
shown that the question of the existence of sparse sets in P which are not P-printable is
related to the question of the existence of one-way functions and sequences which are easy to
check and hard to evaluate. A number of questions about sparse sets in P remain open.

Chapter 6 contains results which indicate that not all sparse sets in P are P-printable;
however, non-P-printable sets may still be in PUNC. Are all sparse sets in P in PUNC? Are

there any sparse sets for which there is strong evidence that they are not in PUNC? s there a

93

sparse set in P which is in PUNC iff every sparse set in P is in PUNC? These questions
deserve further attention.
Are all sparse sets in SC in PUNC? Recall in this regard that the exponential-time

analog of SC is contained in the exponential-time analog of PUNC.

Ranking Functions

The techniques which enabled us to compute the inverses of easy functions also
enabled us to compute ranking functions. A number of questions about ranking functions
remain outstanding. Can the class of languages with easy ranking functions be characterized ’
in some way? Can a set which is hard for P have an easy ranking function? What is the
compléxity of computing ranking functions; é.g., is there a regular set with a ranking function
which is hard for P? Finally, there is the intriguing question of whether or not there is any
deeper connection than was presented here between the ability to compute ranking functions

for languages and the ability to compute inverses for functions.

The Structure of Complete Sets

In Chapter 8, we showed that languages which are complete for complexity classes
under very weak reductions are p-isomorphic, or are nearly so. [t is interesting to note that
the techniques which were used in Chapter 9 are very specific to 1-L reductions. For instance,
consider sets which are complete for DTIME(20(n) under two-way DFA reductions. (A
number of such sets are presented in [St-74].) [t follows from the results of, e.g., [Wa-85], that
all such sets are P-isomorphic. However, nothing is known about sets complete for
NTIME(20() under two-way DFA reductions; it is not even known if such reductions can be

replaced by one-one or length-inereasing reductions.

94

REFERENCES

[Ad-79] L. Adleman, A subexponential algorithm for the discrete logarithm problem with

applications to cryptography, Proc. 20th IEEE Symposium on Foundations of
Computer Science, pp. 55-60.

[AHU-68]A. V. Aho, J. E. Hoperoft, and J. D. Ullman, Time and tape complexity of pushdown
automaton languages, Information and Control 13, 186-206.

[AHU-69]A. V. Aho, J. E. Hopcroft, and J. D. Ullman, A general theory of translation,
Mathematical Systems Theory 3, 193-221.

[AHU-741A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts.

[AU-72]1 A. Aho and J. Ullman, The Theory of Parsing, Translation, and Compiling,
Prentice-Hall, Englewood Cliffs, NJ.

[ADP-80] G. Ausiello, A. D’Atri, and M. Protasi, Structure preserving reductions among
convex optimization problems, J. Computer and System Sciences 21, 136-153.

[BB-74] B. Baker and R. Book, Reversal-bounded multipushdown machines, J. Computer
and System Seiences 8, 315-332.

[BCH-84] P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and
related problems, Proc. 25th [EEE Symposium on Foundations of Computer
Science, pp. 1-11.

[Be-77]1 L. Berman, Polynomial reducibilities and complete sets, Doctoral Dissertation,
Cornell University.

[BH-77] L. Berman, J. Hartmanis, On isomorphisms and density of NP and other complete
sets, SIAM J. Comput. 6, 305-323.

[BM-84] M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudo-random bits, SIAM J. Comput. 13, 850-864.

[Bo-74] R. V. Book, Tally languages and complexity classes, Information and Control 26,
186-193. '

[BGW-79]R. V. Book, S. A. Greibach, and C. Wrathall, Reset machines, J. Computer and
System Sciences 19, 257-276.

[BL-85]

[Bo-77]

[Bo-85]

[Br-77a]

[Br-77b]

[Br-80]

[Br-79]

[Br-83]

[CKS-81]

[CSV-84]

[Ch-77]

[CJ-TT]

[Co-71]

{Co-79]

[Co-81])

[Co-83|

95

R. Boppana and J. C. Lagarias, One-way functions and circuit complexity,
manuscript.

A. Borodin, On relating time and space to size and depth, SIAM J. Comput. 6, 733-
743.

S. W. Boyack, The robustness of combinatorial measures of Boolean matrix
complexity, Doctoral Dissertation, M.I.T.

F.-J. Brandenburg, On one-way auxiliary pushdown automata, Proc. 3rd GI
Conference, Lecture Notes in Computer Science 48, pp. 133-144.

F.-J. Brandenburg, The contextsensitivity of contextsensitive grammars and
languages, Proc. 4th International Colloquium on Automata, Languages, and
Programming, Lecture Notes in Computer Science 52, pp. 120-134.

F.-J Brandenburg, Multiple equality sets and Post machines, J. Computer and
System Sciences 21, 292-316.

G. Brassard, A note on the complexity of cryptography, IEEE Transactions on
Information Theory IT-25, 232-233.

G. Brassard, Relativized cryptography, IEEE Transactions on Information Theory
IT-29, 877-894.

A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, Alternation, J. ACM 28, 114-133.

A. K. Chandra, L. J. Stockmeyer, and U. Vishkin, Constant depth reducibility,
SIAM J. Comput. 13, 423-439.

M. P. Chytil, Comparison of the active visiting and the crossing complexities, Proc.
6th Conference on Mathematical Foundations of Computer Science, Lecture Notes
in Computer Science 53, pp. 272-281.

M. P. Chytil and V. Jakl, Serial composition of 2-way finite-state transducers and
simple programs on strings, Proc. 4th International Colloquium on Automata,
Languages, and Programming, Lecture Notes in Computer Science 52, pp. 135-147.

S. Cook, Characterizations of pushdown machines in terms of time-bounded
computers,J. ACM 19, 175-183.

S. Cook, Deterministic CFL’s are accepted simultaneously in polynomial time and
log squared space, Proc. 11th Annual ACM Symposium on Theory of Computing,
pp. 338-345.

S. A. Cook, Towards a complexity theory of synchronous parallel computation,
L’Enseignement Mathematique 27, 99-124.

S. Cook, The classification of problems which have fast purallel algorithms, Proe.
4th [nternational Conference on Foundations of Computation Theory, Lecture
Notes in Computer Science 158, pp. 78-93.

96

[DKR-76} A. Demers, C. Kelemen, B. Reusch, On encryption systems realized by finite

transducers, technical report TR 76-291, Cornell University.

[DKR-82] A. Demers, C. Kelemen, B. Reusch, On some decidable properties of finite state

translations, Acta Informatica 17, 349-364.

{DDD-83] R. DeMillo, G. Davida, D. Dobkin, M. Harrison, and R. Lipton, Applied Cryptology,

[DH-76]

[Do-821

[DC-80]

Cryptographic Protocols, and Computer Security Models, Proceedings of Symposia
in Applied Mathematics, vol. 29, American Mathematical Society.

W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions
on Information Theory IT-22, 644-654.

M. Dowd, Isomorphism of complete sets, Tech. Report LCSR-TR-34, Rutgers
University.

P. W. Dymond and S. A. Cook, Hardware complexity and parallel computation,
Proc. 21st IEEE Symposium on Foundations of Computer Science, pp. 360-372.

[FMR-68] P. Fischer, A. Meyer, and A. Rosenberg, Counter machines and counter languagés,

[F1-66]

[Ga-T7]

[GP-83]

[Gd-79]

{vz(G-84]

[Gi-TT]

Mathematical Systems Theory 2, 265-283.

M. Flynn, Very high-speed computing systems, Proceedings of the [EEE, 54, 1901-
1909.

Z. Galil, Some open problems in the theory of computation as questions about two-
way deterministic pushdown automaton languages, Mathematical Systems Theory
10,211-228.

7. Galil and W. Paul, An efficient general-purpose parallel computer, J. ACM 30,
360-387.

M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman and Co.,
San Francisco.

J. von zur Gathen, Parallel powering, Proc. 25th IEEE Symposium on Foundations
of Computer Science, pp. 31-36.

J. Gill, Computational complexity of probabilistic Turing machines, SIAM J.
Comput. 6, 675-695.

[GGH-67] S. Ginsburg, S. Greibach, and M. Harrison, Stack automata and compiling, J. ACM

[GS-85]

[Go-82]

14, 172-201.

A. V. Goldberg and M. Sipser, Compression and Ranking, Proc. 17th Annual ACM
Symposium on Theory of Computing, pp. 440-448.

L. M. Goldschlager, A universal interconnection pattern for parallel computers, -J.
ACM 29, 1073-1086.

[(Gr-69]

[{Gr-78a)

[Gr-78b]

[Gr-84]

[GS-84]

[GI-81]

[Gu-83]

[Ha-78]

[Ha-83]

97

S. A. Greibach, Checking automata and one-way stack languages, J. Computer and
System Sciences 3, 196-217.

S. A. Greibach, Hierarchy theorems for two-way finite state transducers, Acta
Informatica 11, 89-101.

S. A. Greibach, One way finite visit automata, Theoretical Computer Science 6, 175-
221.

J. Grollmann, Complexity measures for public-key cryptosystems, Doctoral
Dissertation, Universitdt Dortmund.

J. Grollmann and A. Selman, Complexity measures for public-key cryptosystems,
Proc. 25th IEEE Symposium on Foundations of Computer Science, pp. 495-503.

E. M. Gurari and O. H. Ibarra, The complexity of decision problems for finite-turn
multicounter machines, Proc. 8th International Colloquium on Automata,

Languages, and Programming, Lecture Notes in Computer Science 115, pp. 495-
505.

Y. Gurevich, Algebras of feasible functions, Proc. 24th [EEE Symposium on
Foundations of Computer Science, pp. 210-214. "

J. Hartmanis, On log-tape isomorphisms of complete sets, Theoretical Computer
Science 7, 273-286.

J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible.

computations, Proc. 24th IEEE Symposium on Foundations of Computer Science,
pp. 439-445.

[HIM-78} J. Hartmanis, N. Immerman, S. Mahaney, One-way log-tape reductions, Proc. 19th

[HM-80]

[HM-81]

[HY-84]

{Ho-80]

[(HU-67]

[HU-79]

[EEE Symposium on Foundations of Computer Science, pp. 65-72.

J. Hartmanis, S. Mahaney, An essay about research on sparse NP-complete sets,
Proc. 9th Conference on Mathematical Foundations of Computer Science, Lecture
Notes in Computer Science 88, pp. 40-57.

J. Hartmanis, S. Mahaney, Languages simultaneously complete for one-way and
two-way log-tape automata, SIAM J. Comput. 10, 383-390.

J. Hartmanis and Y. Yesha, Computation times of NP sets of different densities,
Theoretical Computer Science 34, 17-32.

Jia-wei Hong, On similarity and duality of computation, Proc. 2ist [EEE
Symposium on Foundations of Computer Science, pp. 348-359.

J. Hoperoft and .J. Ullman, Nonerasing stack automata, J. Computer and System
Sciences 1, 166-186.

4. E. Hoperoft and J. D. Ullman, [ntroduction to Automata Theory, Languages. and
Computation, Addison-Wesley, Reading, Mass.

[Ib-78]

[Ib-82]

[Ib-83]

[Jo-84]

[Jo-75]

[JY-85]

[KL-82]

[Ki-81a]

[Ki-81b]

[Ko-83]

[Ko-84]

[{Ko-81]

[Ku-83]

[Le-79]

[Le-85]

[Li-85]

[LL-78]

98

O. H. Ibarra, Reversal-bounded multicounter machines and their decision problems,
J. ACM 25, 116-133.

O. H. Ibarra, 2DST mappings on languages and related problems, Theoretical
Computer Science 19, 219-227.

O. H. Ibarra, On some decision questions concerning pushdown machines,
Theoretical Computer Science 24, 313-322.

D. S. Johnson, The NP-completeness column: an ongoing guide, Journal of
Algorithms 5, 284-299.

N. D. Jones, Space-bounded reducibility among combinatorial problems, J.
Computer and System Sciences 11, 68-85.

D. Joseph and P. Young, Some remarks on witness functions for non-polynomial
and non-complete sets in NP, to appear in Theoretical Computer Science.

R. M. Karp and R. J. Lipton, Turing machines that take advice, L’'Enseignement
Mathematique 28, 191-209.

K. N. King, Measures of parallelism in alternating computation trees, Proc. 13th
Annual ACM Symposium on the Theory of Computing, pp. 189-201.

K. N. King, Alternating multihead finite automata, Proc. 8th International
Colloquium on Automata, Languages, and Programming, Lecture Notes in
Computer Science 115, pp. 506-520.

K.-1. Ko, On the definition of some complexity classes of real numbers, Mathematical
Systems Theory 16, 95-109.

K.-I. Ko, A definition of infinite pseudorandom sequences, manuseript, University
of Houston.

A. Konheim, Cryptography, A Primer, Wiley, New York.

S. A. Kurtz, A relativized failure of the Berman-Hartmanis conjecture, draft,
Department of Mathematics, University of Chicago, May.

A. Lempel, Cryptology in transition, Computing Surveys 11, 285-303.

L. A. Levin, One-way functions and pseudorandom generators, Proe. 17th Annual
ACM Symposium on Theory of Computing, pp. 363-365.

M. Li, Lower bounds on string-matching, manuscript.

N. Lynch and R. Lipton, On structure preserving reductions, SIAM J. Comput, 7,
119-126.

[Ma-69]

[Ma-821

[MY-85]

[Mi-76]

[MS-80]

[MS-81]

[MT-79]

[Pi-79]

{Pi-81]

[PF-79]

[Ra-79]

[Ra-80]

[Ra-85]

[Re-83]

[Re-85]

[RT-84]

[RSA-78]

99

G. Mager, Writing pushdown acceptors, J. Computer and System Sciences 3, 276-
319.

S. Mahaney, Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis, J. Computer and System Sciences 25, 130-143.

S. Mahaney and P. Young, Reductions among polynomial isomorphism types, to
appear in Theoretical Computer Science.

G. L. Miller, Riemann’s hypothesis and tests for primality, J. Computer and System
Sciences 13, 300-317.

B. Monien and 1. Sudborough, Bandwidth problems in graphs, Proc. 18th Annual
Allerton Conference on Communication, Control, and Computing, pp- 650-659.

B. Monien and I. Sudborough, Bandwidth constrained NP-complete problems, Proc.
13th Annual ACM Symposium on Theory of Computing, pp. 207-217.

R. Morris and K. Thompson, Password security: a case history, CACM 22, 594-597.

N. Pippenger, On simultaneous resource bounds, Proc. 20th [EEE Symposium on
Foundations of Computer Science, pp. 307-311.

N. Pippenger, Pebbling with an auxiliary pushdown, .J. Computer and System
Sciences 23, 151-165.

N. Pippenger and M. J. Fischer, Relations among complexity measures, J. ACM 26,
361-381.

M. O. Rabin, Digital signatures and public-key functions as intractable as
factorization, technical report MIT/LCS/TR-212, M.I.T.

M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12,
128-138.

C. Rackoff, personal communication.
K. W. Regan, On diagonalization methods and the structure of language classes,

Proc. 4th International Conference on Foundations of Computation Theory,
Lecture Notes in Computer Science 158, pp. 368-380.

K. W. Regan, A uniform reduction theorem with application to the complexity of
inverting easy-to-compute functions, manuscript.

J. H. Reif and J. D. Tygar, Efficient parallel pseudo-random number generation,
technical report TR-07-84, Harvard University.

R. L. Rivest, A. Shamir, und [.. Adleman, A method for obtaining digital signatures
and public-key cryptosvstems, CACM 21, 120-126.

[Ro-66]

[Ro-73]

[Ru-80]
[Ru-81]

[Ru-85]
[Sa-72]

[SY-82]
[Sh-81]

[Sh-49]

[Si-82]

[SS-77]

[SHL-65]

[St-74]
[Su-75al
[Su-75b]

[Su-78]

100

H. Rogers, Recursive Functions and Effective Computability, McGraw-Hill, New
York.

W. C. Rounds, Complexity of recognition in intermediate-level languages, IEEE
Conference Record of the 14th Annual Symposium on Switching and Automata
Theory, pp. 145-158.

W. L. Ruzzo, Tree-size bounded alternation, J. Computer and System Sciences 21,
218-235.

W. L. Ruzzo, On uniform circuit complexity, J. Computer and System Sciences 22,
365-383.

W. L. Ruzzo, personal communication.
J. E. Savage, Computational work and time on finite machines, J. ACM 19, 660-674.
A. Selman and Y. Yacobi, The complexity of promise problems, Proc. 9th

International Colloquium on Automata, Languages, and Programming, Lecture
Notes in Computer Science 140, pp. 502-509.

A. Shamir, On the generation of cryptographically strong pseudo-random sequences,
Proc. 8th International Colloquium on Automata, Languages, and Programming,
Lecture Notes in Computer Science 115, pp. 544-550.

C. E. Shannon, Communication theory of secrecy systems, Bell System Technical
Journal 28, 656-715.

M. Sipser, On relativization and the existence of complete sets, Proc. 9th
International Colloquium on Automata, Languages, and Programming, Lecture
Notes in Computer Science 140, pp. 523-531.

R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput.
6, 84-85.

R. E. Stearns, J. Hartmanis, and P. M. Lewis I, Hierarchies of memory limited
computations, IEEE Conference Record on Switching Circuit Theory and Logical
Design, pp. 179-190.

L. J. Stockmeyer, The complexity of decision problems in automata theory and logic,
Doctoral Dissertation, M.I.T.

I. H. Sudborough, On tape-bounded complexity classes and multihead finite
automata, J. Computer and System Sciences 10, 62-76.

I. H. Sudborough, A note on tape-bounded complexity classes and linear context-free
languages, J. ACM 22, 499-500.

I. H. Sudborough, On the tupe complexity of deterministic context-free languuges, .J.
ACM 25, 405-414.

[Su-83]

[Va-76]

[Vi-83]

[Vi-84]

[Vi-81]

[VS-78]

[Wa-85]

[We-79]

[We-80]

[WB-79]

[Wi-68]

[Ya-82]

[Yo-83]

[Za-82]

101

I. H. Sudborough, Bandwidth constraints on problems complete for polynomial time,
Theoretical Computer Science 26, pp. 25-52.

L. Valiant, Relative complexity of checking and evaluating, Information Processing
Letters 5, 20-23.

U. Vishkin, Synchronous parallel compuiation-a survey, Preprint, Courant
Institute, New York University.

U. Vishkin, A parallel-design distributed-implementation (PDDI) general-purpose
computer, Theoretical Computer Science 32, 157-172.

P. M. B. Vitanyi, A note on DPDA transductions of {0,1}* and inverse DPDA
transductions of the Dyck set, Intern. J. Computer Math. Section A, Vol. 9, 131-137.

P. M. B. Vitinyi and W. J. Savitch, On inverse deterministic pushdown
transductions, J. Computer and System Sciences 16, 423-444.

Osamu Watanabe, On one-one polynomial time equivalence relations, to appear in
Theoretical Computer Science.

G. Wechsung, The oscillation complexity and a hierarchy of context-free languages,
Proc. 2nd International Conference on Fundamentals of Computation Theory,
Akademie-Verlag, Berlin, GDR, pp. 508-515.

G. Wechsung, A note on the return complexity, Elektronische
Informationsverarbeitung und Kybernetik 16, 139-146.

G. Wechsung and A. Brandstadt, A relation between space, return and dual return
complexities, Theoretical Computer Science 9, 127-140.

M. V. Wilkes, Time-Sharing Computer Systems, MacDonald/American Elsevier,
New York.

A. C. Yao, Theory and applications of trapdoor functions, Proc. 23rd IEEE
Symposium on Foundations of Computer Science, pp. 80-91.

P. Young, Some structural properties of polynomial reductbilities and sets in NP,
Proc. 15th Annual ACM Symposium on Theory of Computing, pp. 392-401.

- 8. Zachos, Robustness of probubilistic computational complexity classes under

defnitional perturbations, Information and Control, 54 143-154.

102

VITA

Eric Warren Allender was born November 19, 1956 in Mt. Pleasant,
Iowa. He graduated from Mt. Pleasant High School in 1975, and then
attended the University of Iowa, receiving the B. A. degree with majors in

Theatre and Computer Science in 1979.

