INVERTIBLE FUNCTIONS

A THESIS
Presented to
The Faculty of the Division of Graduate Studies
By

Eric Warren Allender

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

in the School of Information and Computer Science

Georgia Institute of Technology
September, 1985

ii

ACKNOWLEDGEMENTS

I wish to acknowledge the contributions of two groups of people. One
group consists of those persons who helped determine the directions in which
my research developed. The other group consists of persons who helped
determine the directions in which I developed.

To the first group belong first and foremost my advisor: Kim King, and
the other members of my committee: Ray Miller, Rich DeMillo, and Craig
Tovey. Thanks is due to them for helping me to learn what is interesting and
what is not.

Theorem 3.6 grew out of a discussion with Marc Graham. The origins of
Theorems 6.4 and 6.5 can be traced to a discussion with Jin-yi Cai. Chapter 7
was inspired by some comments from Charles Rackoff. Other observations
which have found their way into the dissertation first came up in separate
conversations with Steve Cook, Jim Hoover, Pat Dymond, and Larry Ruzzo.

I would like to thank Don Alton and Ted Baker for first introducing me
to the pleasures of theoretical computer science. Thanks are due toJim Allchin,
Lucio Chiaraviglio, Mike Merritt, John Muller, Barbara Smith-Thomas, Jerry
Spinrad, and Gopalakrishna Vijayan, in addition to those mentioned above, for
creating a favorable environment in which to pursue the study of theoretical
issues. Thanks are also due to the National Science Foundation for supporting
me under grant number MCS 81-03608, and to Ed Rumiano for keeping the
paperwork flowing and keeping the checks coming; that also helped create a
favorable environment.

The past five years would have unthinkable without the reality breaks
provided by the Chattahoochee Country Dance Society, the Seed and Feed
Marching Abominable Band, and my racketball partner, John Y ntema.

To my mother and father, [owe all that [am.

To Claire Todd, my bride, [owe all that I shall be. This is dedicated to
her.

1ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTSii
ABSTRACT.+ « « « « « « « « .« . .iv

CHAPTERS :
I: Introduction . . O |
One-Way Functions
Pseudo-Random Number Generators
Encryption
The Structure of Complete Sets
Finite Functions
Lower Bounds

Parallel Computation . . .« .+ . . .16
General-Purpose Parallel Computers
Circuits
NC
PUNC
II: Preliminaries.24

III: Characterizations of Parallel Complexity Classes. 29
Auxiliary Pushdown Automata
and Alternating Turing Machines
A General-Purpose Parallel Computer for PUNC
Tally Languages and Complexity Classes

IV: Classesof Invertible Functions 43
Classes of Machines Computing Invertible Functions
Other Classes of Machines
Classes of Functions with Inversesin SC
Classes of Circuits

V: RankingFunctions65

VI: The Complexity of Sparse SetsinP70
VII: Precomputation16
VII: The Structure of CompleteSets 80
IX: Conclusionsand OpenProblems91
REFERENCES.9%

VITA.+ .+ « « « « « « « « « « .« . . . o102

iv

Abstract

This thesis explores the question of how hard a function must be to
compute, for its inverse to be difficult. Results in the thesis delineate a sharp
boundary between classes of machines computing only functions with easy
inverses and classes which contain machines which compute functions whose
inverses are intractable.

We show that if a function is easy enough to compute, then its inverse is
easy to compute, in the sense that it can be computed in polynomial time. In
fact, we prove the stronger result that the inverses of such functions can be
computed extremely quickly on a parallel computer which has a feasible
number of processors. In order to make that notion precise, we define a new
complexity class, PUNC, which models the notion of “feasible parallelism”
more naturally than classes which have been studied previously. We present
several equivalent characterizations of PUNC and explore relationships
between PUNC and other complexity classes.

The results and techniques which we develop lead to a number of
peripheral results. The characterizations of PUNC lead to a complexity-
theoretic treatment of precomputation. Our results about classes of invertible
functions yield corollaries about “ranking” functions, which have applications
to the theory of data compression. Those results also lead to theorems about the

complexity of sparse sets and about the structure of complexity classes.

CHAPTERI

Introduction

One-Way Functions

There has been a great deal of interest lately in “one-way” functions: functions which
are easy to compute, but whose inverses are hard to compute. One-way functions have been
useful in designing public-key cryptosystems [RSA-78, Ya-82] and secure pseudo-random
number generators [BM-84, Ya-82, Le-85]. It has been shown that if one-way functions exist,
then probabilistic algorithms can be simulated quickly by deterministic machines [Ya-82].
One-way functions have also been studied in relation to questions about the structure of
complexity classes [JY-85, Yo-83, Wa-85]. Because of the importance of one-way functions,
we consider the following question to be fundamental:

How hard must a function be to compute for its inverse to be intractable?

In other words, we are interested in proving lower bounds on the complexity of one-
way functions.

In order for this question to be meaningful, we must have some notion of the
complexity of computing a function, and we must agree on what the proper notion of “inverse”
is, and on what it means for a function to be intractable. Unfortunately, there is little
agreement on these matters; certain definitions are appropriate in some settings but not in
othérs. In this section we will review past work which relates to one-way functions, noting

how the notion of “one-wayness” varies according to the circumstances. Then, having

completed the review, we will present the definitions which we will be using as we consider
the question presented above.

An inverse of a function fis a function g such that fig(y)) = y for all y in the range of f.
That is, g takes an element y and finds some x which is mapped to y by f, if such an x exists.
Note that, according to this very general definition, a function f will have more than one
inverse if it is not one-one or if it is not onto. This notion of inverse is general enough to
include most other notions of inverse which have been considered in the literature.

For reasons which have been discussed at length elsewhere (see, e.g., [GJ-79]), a
funection fis considered to be easy to compute if there is a Turing machine computing f which
has a running time bounded by a polynomial in the length of its input. Although that is the
standard notion, it is not uncommon for a function to be considered easy if it can be computed
in random polynomial time: that is, if there is a Turing machine which is allowed to flip coins
and to make decisions based on the outcomes of the flips, and which, on input x of length n,
halts in polynomial time and outputs flx) with probability 1 —(2-"). For instance, primality
testing is in random polynomial time [Ra-80, SS-77], although it is not known if primality
testing can be done in deterministic polynomial time (although see [Mi-76]). (The definition
of random polynomial time is robust in the sense that minor changes to the definition do not
change the class of functions defined. More precise definitions can be found in [Gi-77, Za-82].)

If both a function f and an inverse for f are easy, then clearly f is not a one-way
function. Thus the simplest, and least restrictive, definition of one-wayness states that fis
one-way iff fis computable in polynomial time and no inverse of fis computable in polynomial
time.

Unfortunately, many functions are one-way according to this definition even though

they have inverses which are conceptually very simple. For instance, the function f defined

by flx) = 1Moglx|1t is one-way simply because it shrinks its input by more than a polynomially-
bounded amount. Such functions are called “dishonest”; a function f is honest iff there is a
polynomial p such that for all y in the range of £, there is an x such that p(|y|) = |x| and Ax) = y.
Clearly, only honest functions can be inverted in polynomigl time.

The existence of honest one-way functions is an open problem.
Proposition 1.1:

P = NP & there exists an honest function f which can be computed in polynomial

time, but which has no inverse which can be computed in polynomial time.

Proof: (=) Let flA,y) = y if y is an instance of SAT and A is a satisfying truth assignment to
the variables of y; AA,y) = a v —a otherwise. If fhas an inverse g computable in polynomial
time, then y € SAT iff Ag(y)) = y, and thus P = NP.

(&) Let f be an honest function computable in polynomial time, and let g be a
polynomial such that for all y € range(f), there exists an x such that lx) = y and q(|y|) = |«].
Then the set L = {x#y| there is a string w such that |xw| < q(|y]) and Axw) = y}isin NP. IfL
is in P, then it is easy to compute an inverse for fby building x bit-by-bit. O

It may happen that a function fis honest and one-way, but has some inverse g such
that, while g is not computable in polynomial time, there is a program computing g which
requires only polynomial time for a nonnegligible fraction of the inputs (or, equivalently,
there is a polynomial-time Turing machine which computes a function g’ which agrees with g
on a large portion of the inputs). Such a function f may not be hard enough to invert to be
useful in some situations.

For example, consider the following use of one-way functions. User passwords must

be stored in some way by an operating system. [f the passwords are all stored together in a

tNotation is defined in the "Preliminaries” section: Chapter 2.

file somewhere, then anyone who finds a way to read the contents of that file can log onto any
other user’s account. One way to add more security is to use some one-way function f for each
user with password w, the operating system stores flw) in its password file. When the user
logs in and types the password w, the system computes flw) and verifies that the password is
correct. However, anyone who finds a way to read the password file has no way to recover the
password w from {w), since that involves inverting f, which is hard, since fis one-way. (This
was, in fact, the original use of one-way functions; the Titan operating system project
investigated protecting user passwords in this way [Wi-68]. This scheme is also used in the
UNIX? system [MT-79].) If, however, there is a function g’ which runs in polynomial time and
c.omputes an inverse for fon one third of the inputs, then the level of security provided by this
scheme is not acceptably high.

The question of what is a “nonnegligible fraction of the inputs” is a ticklish one (see,
e.g., [Jo-84, Le-85]). For instance, it may be that fis hard to invert for all but 1/n2 of the
inputs of length n (or for all but 1/nVrof the inputs of length n), but it is precisely those inputs |
on which f is easy to invert which are “likely” to appear. One way to tackle this problem
which has yielded a number of interesting and useful results is to postulate that inputs to a
given problem are distributed according to the output of some feasible process, where the
inputs to the feasible process are distributed uniformly. (A very informal justification of this
view is the following: consider the inputs to a problem and the probability distribution on
those inputs. Where did those inputs come from? What produced the probability
distribution? It is reasonable to hypothesize the existence of a deterministic or probabilistic
process which is producing inputs to the problem.) The class of probability distributions

which can be produced in this way is very large.

*UNIX is a Trademark of Bell Laboratories.

In measuring the “one-wayness” of a function f with respect to some distribution 4, we
are thus interested in finding a probability function g(n) such that for any honest polynomial-
time function g, the probability that flg(h(x))) = h(x) is at least g(|x|), where the inputs x are
uniformly distributed. (Equivalently, we are measuring the probability that flg(y)) = y,
where the inputs y are distributed according to the probability that they appear in the range
of h, where the inputs to k& are uniformly distributed.) Let us call a function which can be
computed in polynomial time and whose inverse is intractable in this sense for all large n
q(n)-securely one-way with respect to h. If h is the identity function, we shall simply call such
a function g{n)-securely one-way.

The aforementioned system for encoding passwords in an operating system requires a
high Iével of security; ideally the one-way’function used in the system should be nearly
1-—-1/2n-securely one-way. One-way functions used in public-key cryptosystems also need to.
be quite secure. It is perhaps surprising that functions which are as little as 1/k- or 1/p(n)-
secure for some constant k or polynomial p also have applications. Such functions can be used
to construct secure pseudo-random number generators.

Pseudo-Random Number Generators

A pseudo-random number generator is a feasible (deterministic or random) algorithm
which takes a short random seed x of length n and produces a long sequence of bits b1, b9, ... ,
bp(ny, where p is some polynomial. A pseudo-random number generator is secure if for all i, it
is hard to predict b; .1 from by, b9, ... , b;. The sense in which the next bit must be “hard” to
compute varies from author to author. For instance, Yao [Yé-82] and Levin [Le-85] require
that no probabilistic polynomial-time Turing machine can predict the next bit correctly with

probability 1/2 + 1/p(n) for any polynomial p for seeds of size n. Using this notion of security,

there is no feasible algorithm which can infer the next bit of the sequence for all seed lengths

n. Blum and Micali [BM-84] considered a stronger notion of security: they require that for all

seed lengths n there is no feasible algorithm which can infer the next bit of the sequence.
Thus they stipulate that no circuit of size polynomial in n predicts b;4; from by, b, ..., b; on
seed length n with probability 1/2 + 1/p(n).

The connection between one-way functions and pseudo-random number generators
was first pointed out by Shamir and Rivest [Sh-81]. Intuitively, if fis one way, then x is hard
to infer from Ax), Ax) is hard to infer from AAx)), and so forth, and thus fp(n)(x), fotn)-1(x), ...,
flx}, x seems to have some of the characteristics of a pseudo-random sequence. Shamir [Sh-
81] gives a generator which produces a sequence of numbers (not bits), where the problem of
inferring the next number in the sequence is equivaleﬁt to inverting the RSA encryption
function [RSA-78]. Note that inferring the next number in the sequence may be much harder
than predicting the next bit. Blum and Micali [BM-84] were the first to present a pseudo-
random number generator which is secure in the sense given above, assuming that the
discrete logarithm problem is 1 —w(1/p(n))-secure for all polynomials p. Yao showed in [Ya-
82] that any honest one-way one-one function which is 1/p(n)-secure with respect to certain
kindg of distributions gives rise to a secure pseudo-random number generator. Levin [Le-85]
showed that the existence of pseudo-random number generators is equivalent to the existence
of (not necessarily one-one) one-way functions f which are 1/k-secure with respect to fifor 1 <
i = n3on inputs of length n (for any constant k).

The link between one-way funetions and pseudo-random number generation leads to
some surprising results about complexity classes. The class BPP was defined by Gill in [Gi-
771 to be the class of languages accepted by probabilistic polynomial-time Turing machines,
as presented above. It was observed by Yao [Ya-82] that if pseudo-random number generators
exist, then a probabilistic Turing machine M which flips a coin p(n) times can be simulated by
a probabilistic Turing machine M’ which flips a coin only n times (to get the random seed) and

then generates a pseudo-random sequence of length p(n) which it uses to simulate p(n) coin

flips. If M’ does not compute the same function as M, then it can be shown that the bits of the
pseudo-random sequence can be inferred by a polynomial-time probabilistic Turing machine,
which would be a contradiction. In this way, we can reduce the amount of coin flipping by any
polynomially-bounded amount.

Now consider a deterministic simulation of a probabilistic machine. The best
containment result which is known is the trivial result BPP C DTIME(27°"), which is
obtained by simulating a given probabilistic machine M by deterministically writing out all
possible sequences of coin flips which M may have made, and simulating M on each sequence
of flips. However, if (secure) one-way functions exist, then so do pseudo-random number
generators, and a given probabilistic machine M can be simulated indirectly, by instead
simulating the machine M’ which flips coins much less often than M, as considered above. ‘In
this way one can show BPP C M, > ¢ DTIME(27) [Ya-82].

Encryption

One-way functions have many applications in cryptography, both in private-key
systems (because of the link between one-way functions and pseudo-random number
generators) and in public-key cryptosystems.

In a private-key cryptosystem, two users A and B share a secret key &. When A wants
to send a message M to B, A applies an encryption routine E(k,M), and, to receive the
message, B applies a decryption routine D(k,E(k,M)) = M. A one-time pad is a private-key
cryptosystem in which |k = |M| and the encryption and decryption routines involve simply
applying the exclusive OR operation to the operands. One-time pads were shown by Shannon
to be secure from cryptanalysis [Sh-49]. A drawback to one-time pads, however, is that the

length of the key is equal to the length of the message. This drawback can be avoided by

using pseudo-random number generators. Let A and B share a short secret key k1. Then A

and B can compute a longer key k by generating a pseudo-random sequence with &y as the
seed. Such a system is secure from all feasible cryptanalytic attacks [Ya-82].

A major problem with private-key cryptosystems is that every pair of users must
share a secret key, and some secure method must be provided for distributing the secret keys.
In order to sidestep this problem, public-key cryptosystems were introduced in [DH-76]. A
great deal of research has centered on public-key cryptography in the intervening decade.

A public-key cryptosystem consists of encryption and decryption algorithms E and D,
as well as a key generator G which produces pairs (k, k) where & is the secret (or private) key,
and kp, is the public key. It is required that

(1) for all messages M, D(k,E(kp,M)) = M,

(2) E and D are easy to compute,

(3) given k, and E(kp,M), it is hard to compute M.

If a given user Alice wants to receive encrypted messages, she uses G to generate a
pair (k, kp). She keeps k secret but makes kp, public (hence the name public-key cryptosystem). |
Now if Bob wants to send Alice a message M, Bob looks up Alice’s public key and sends Alice
E(kp,M). To read the message, Alice computes D(k,E(kp,M)) and reads M.

Good treatments of public-key cryptography can be found in [DDD-83, DH-78, Ko-81,
Le-T91.

Let us now consider a particular public-key cryptosystem, and let S be the set of all
valid public keys. Let fbe the function which takes (k,,M) to (k,,E(k,,M)). By point (3) above,
fis one-way. Note that [is also one-one on SXZ*, since if E(k,, M) = E(k,,M"), then M =
D(k,E(kp, M) = D(k,E(kp,M")) = M'. Thus any public-key cryptosystem gives rise to a one-
way function which is one-one on the set of all “valid” inputs. Because it is one-one functions
which are of the greatest interest in this setting, many authors do not consider a function to

be one-way unless it is one-one (e.g., [GS-84, Ya-82, Yo0-331).

If the cryptosystem is secure, the function f will be very securely one-way on SXIT*.
Unfortunately, since the existence of one-way functions implies P = NP, it is currently not
known how to prove that a given cryptosystem is secure, even in the much weaker sense of
being hard to crack for infinitely many (key, message) pairs. Some public-key cryptosystems
have been shown to be secure if certain apparently-intractable problems such as factoring are
indeed intractible [Ra-79], but the goal of finding a cryptosystem which is NP-hard to crack
has proved elusive. Indeed, there is a considerable body of evidence that no such cryptosystem
exists.

The question of the existence of NP-hard public-key cryptosystems reduces to the
question of whether the problem of inverting fon SXZ* is NP-hard: that is, can SAT be
solved in polynomial time relative to an oracle for g, where g is any function which agrees
with the inverse of fon SXZ*? A number of researchers have addressed this question
recently [SY-82, Gr-84, G5-84, Re-85], and a number of surprising consequences would follow
if such a function f could be shown to exist. [t would be even more surprising if the range of
such a function f were in coNP; the next proposition shows that the existence of such a
function would imply NP = coNP.

Proposition 1.2: [BH-77, Br-79, Br-83, Mi-76]

If there exists an honest function f, computable in polynomial time, such that for some

set A € NP, fisone-oneon A, flA) € coNP, and f-! is hard to compute on flA), then P ¢

NP N coNP. (Thus in particular if P = NP N coNP then there are no honest one-way

bijections.)

Proof: Let T = {(x,y) | x € fA) and f-1(x) = y}. To accept T nondeterministically, guess a z
such that z € A and flz) = x (here we require f to be honest) and check that z = y. To accept

the complement of T', check that x € AAA) and if so, accept. Otherwise guess a zsuch thatz € A

10

and fiz) = x and check that z < y. Thus T € NP N coNP. If T € P, then f~1 can be computed in
polyhomial time via a binary search strategy. | O

This result shows why it is difficult to prove that an honest one-one function is one-
way. Since it is beyond the reach of current techniques in complexity theory to prove non-
linear lower bounds on the time complexity of natural problems in NP, the only technique
available for showing that a problem is hard is to reduce some known hard problem to it. If it
were possible to reduce an NP-complete problem to the problem of computing f~1 for some
honest one-one function f whose range is in coNP, it would follow from the above propesition
that NP=coNP, which is unlikely. Thus the best one could hope for is to try to reduce some
problem complete for NP N coNP to f-1. Unfortunately, it seems unlikely that such problems
exist, since by [Gu-83, Si-82] there exist oracles relative to which there are no complete
problems for NP M coNP.

Brassard, in a study motivated by complexity considerations in cryptography, was
able to show the existence of an honest bijection A which is one-way relative to some oracle (in
fact, relative to an oracle for 2) [Br-831.

The Structure of Complete Sets

Interest in one-way functions has also been generated by developments in the theory
of NP-completeness. During the initial flurry of activity followihg the discovery of NP-
complete sets, it became clear that some NP-compiete sets were very closely related in the
sense that each seemed to be a simple reencoding of the others. Furthermore, certain similar
NP-complete problems shared the property that good approximate solutions for them could be
computed efficiently. Other researchers noticed that often there were reductions between
NP-complete problems that preserved the number of ways a given input could be accepted.
Thus people began looking for a way to examine the structure of the class of NP-complete sets.

(See e.g.,[ADP-80, BH-77, LL-78, GJ-791.)

11

One way this work progressed was to consider p-isomorphisms: bijections f such that
both fand f-1 are computable in polynomial time. If one grants that functions computable in
polynomial time are easy to compute, it follows that if there is a p-isomorphism reducing A to
B, then A and B are just equivalent ways of reencoding the same problem. The surprising
result of the investigation into the structure of the class of NP-complete sets under p-
isomorphism is the following [BH-77]: all “natural” NP-complete sets can easily be shown to
be p-isomorphic. This led to the
Berman-Hartmanis Conjecture: [BH-77] All NP-complete sets are p—isomorphic.

Several remarks about this conjecture are in order. First, we note that the Berman-
Hartmanis conjecture is motivated in part by an analogy between the theory of- NP-
cpmplefeness and the theory of recursivé functions. (See [Ro-66] for definitions and concepts
relating to recursive function theory.) In this analogy, NP corresponds to the class of
recursively enumerable (r. e.) sets, NP-complete sets correspond to complete r. e. sets, and p-
isomorphism corresponds to recursive isomorphism. All complete r. e. sets are recursively
isomorphic. The proof of this fact uses the fact that if C is a complete r. e. set, then C is
recursively isomorphic to C X Z*. Any set C having the property that C is isomorphic to C X
Z* is called a cylinder. It is a short step now to define the polynomial analogue of cylinders: a
set C will be called a p-cylinder if C is p-isomorphic to C X Z*. It turns out that all "natural”
NP-complete sets can easily be shown to be p-cylinders and hence p-isomorphic to SAT. The
Berman-Hartmanis conjecture is true if and only if all NP-complete sets are p-cylinders.

One final note about p-cylinders: C is a p-cylinder if an.d only if there is a one-one,
invertible, polynomial-time computable padding function p such that p(x,y) € C & x € C.
(This and other facts about p-cylinders are in [Do-82, Yo-83, MY-85], although the original

ideas, in another formulation, date back to [BH-77}].)

12

The Berman-Hartmanis conjecture has stimulated much work on the structure of
complexity classes under p-isomorphism. A basic result is the following:
Proposition 1.3: [BH-77]
Let freduce A to B, and let g reduce B to A, where fand g are one-one, invertible, and
length-increasing polynomial-time computable functions. (A function f is length-

increasing if |f{x)| > |x| for all x.) Then A and B are p-isomorphic.

Thus, when investigating the structure of the p-isomorphism classes of the NP-
complete sets, the natural reducibility relation to consider is one-one, length-increasing,
invertible Karp reductions. (In [Re-83], these are called LIFP reductions.) Let us write A
< prp B if A is reducible to B via a LIFP reduction. If furthermore, B is not LIFP-reducible to
A, we write A <pirp B. By Proposition 1.3, if A < pp Band B <jpp A, then A and B are p-
isomorphie.

By the results of [MY-85, Re-83, Yo-83], we now know that if the Berman-Hartmanis
conjecture is false, then the structure of the NP-complete sets under < jpp is chaotic; if there
exist non-p-isomorphic NP-complete sets, then any countable partial order can be embedded
in the partial order of the p-isomorphism classes of the NP-complete sets under <y pp.

Analogous questions have been formulated for other complexity classes (e.g.,
PSPACE, DTIME(2!in)) and for other reducibilities (e.g., logspace reducibility). An important
fact is the following.

Proposition 1.4:
If L is complete for DTIME(20(n) under polynomial-time reductions, then L is

complete under one-one, length-increasing polynomial-time reductions.

13

This was first proved in [Be-77]; increasingly simple proofs have since appeared in
[Do-82] and [Wa-85]. Analogous results hold for PSPACE under logspace reductions, and for
higher deterministic complexity classes.

Corollary:

All languages complete for bTIME(ZO‘n)) under polynomial-time reductions are p-

isomorphic if the inverse of every length-increasing one-one polynomial-time

computable function is computable in polynomial time.

The converse to this corollary is still open, although significant progress was made by
Young in [Yo-83]. Young was actually considering the class NP, rather than the higher
classes. For each honest, one-one, polynomial-time computable function £, and for every
integer k, Young defines a set Ky whichr is NP-complete. Furthermore, Young offers
evidencé that if fis not invertible, then Ky, is not p-isomorphic to SAT. Since Young believes
that such non-invertible functions fexist, he makes the
Conjecture: [Yo0-83] The Berman-Hartmanis conjecture is false.

Other results relating to the Berman-Hartmanis conjecture have appeared in [J Y-85,
Ha-83, Ku-83, Wa-85]. Logspace isomorphisms were investigated in [Ha-78].

Finite Functions

One-way functions have also been studied in a very different setting in investigations
into the complexity of finite functions. A finite function is a function f: {0,1}» — {0,1}" for
some n. The complexity of a finite function f, C(f), is usually defined as the size of the smallest
circuit computing f.

Boyack [Bo-85] investigated one-one finite functions and found an infinite sequence of
finite functions f,,: {0,1}7 = {0,1}7 such that C(f,,—-1) > C(f,). In[Bo-85] a sequence (f,,) of one-
one finite functions is considered to be one-way if the set {C{f,,—-1) / C{f,)} is unbounded. It is

not known if a sequence of one-one finite functions f which is one-way in this sense exists.

14

In [EL~85] a sequence (f,) is considered to be one-way if the set {log C(f,,-1) / log C(f,)}
is unbounded. (The functions f, were not required to be one-one.) It was shown in [BL-85]
that such a sequence exists iff every set in NP has polynomial-sized circuits. It was also
shown in [BL-85] that a sequence (f,) of one-one finite functions exists which is one-way with
respect to constant-depth circuits: more specifically, each function in the sequence can be
computed by a circuit of polynomial size and depth four, but there is no depth d and
polynomial bound p(n) such that f,—! can be computed on a circuit of depth d and size p(n) for
all n. Other functions which are one-way with respect to small classes are considered in [RT-
84].

Lower Bounds

The preceding sections presented motivation for the study of one-way functions, and
illustrated how the concept denoted by “one-way function” varies according to circumstances.
The question of proving lower bounds on the complexity of one-way functions has not been
addressed previous.ly. [n addressing this question, we will use the simplest interesting notion
of one-wayness: an honest function f which can be computed in polynomial time will -be
considered to be one-way if no inverse of f can be computed in polynomial time. The next
difficulty to overcome is the question of how to measure the difficulty of computing a function.

The approach of automata-based complexity theory has been to equate the difficulty of
computing a function f with the complexity of the simplest machine computing f, where the
complexity of a machine is determined by its time and memory requirements, its storage
structures, and the way it accesses its input data.

A bewildering variety of storage structures has been considered in the literature.
Among these, we mention counters [FMR-68}, reversal-bounded counters [Ib-78|, reversal-
bounded pushdown stores [BB-74], reset tapes [BGW-79], Post tapes [Br-801, stacks [GGH-67],

nonerasing stacks [HU-67], and checking stacks [Gr-69]. Common types of allowable access

15

to the input data include havihg multiple input heads and restricting the number of times an
input head may cross the boundary between t‘;vo cells (such heads are said to be crossing
bounded). Multiple input tapes are also commonly considered.

The result we report here is that there are three natural classes of automata Cy, Co,
and Cj3 such that any function computed by a machine in Cy, Cq, or C3 is invertible.

The classes Cy, C2, and C3 lie along a spectrum with C_having powerful storage
facilities and weak access to the input data, and class C3 having unrestricted access to the

input and only weak storage structures.

class access storage structure bells and whistles
toinput
C, one-way logspace worktape, extra one-way input tapes

pushdown store

Co k-crossing logspace worktape extra one-way input tapes,
bounded can write on input tape
C3 unrestricted m counters, extra one-way input tapes.

each [-reversal bounded

Theorem 4.3: Let fbe an honest function computed by a machine in Cy, Cs, or C3. Then fhas
an inverse which is computable in polynomial time.

We also present evidence that Theorem 4.3 cannot be extended to other natural
classes of machines. We consider a large number of classes of machines. For each class C
considered (and, we believe, for essentially every class which can be defined using those
storage structures and types of access to input data which have been considered in the
literature), we are either able to present a machine in C computing an honest function whose
inverse is NP-hard, or we are able to present a subexponential-time algorithm for inverting
any honest function computed by a machine in C, and we indicate why it is unlikely that a

faster general method will be found.

16

We actually prove a stronger version of Theorem 4.3: we show that any honest
function computed by a machine in any of the three classes has an inverse which can be
computed very quickly in parallel. In order to present those results, let us first review the

theory of the complexity of parallel computation.

Parallel Computation

With the advent of VLSI, it has become feasible to construct computers which exhibit
massive parallelism; chips with thousands of processors are no longer unimaginable.
Motivated by the possibility of so much parallelism, complexity theory has picked up the
question of determining what class of problems can be solved much more quickly in parallel
than on sequential computers.

A great many different models of parallel computation have been proposed and
studied (see, e.g., [Co-81, Co-83, Vi-83] for a survey), but when minor differences in the models
are ignored, there are basically two different categories into which all those models fall: those
based on general-purpose parallel computers and those based on circuits.

General-Purpose Parallel Computers

Sequential computation on “real” computers is often modelled by RAM’s (see, e.g.
[AHU-74]). What cou’ld be more natural than to use several RAM’s which can communicate
in some way as a model for parallel computation? Models such as SIMDAG’s [Go-82),
WRAM’s [CSV-84], HMM’s [Co-81], etc. [Vi-83] are essentially just that; they differ only in
the way that the RAM’s are connected.

For example, a SIMDAG consists of an infinite sequence of parallel processors Py, Py,
..., each of which can access an infinite “global” (shared) memory, as well as having an infinite
“local” (private) memory. A CPU contains the program and broadcasts instructions to the
first & processors, where & is stored in a register in the global memory. Each P; has the index i

stored in a special register in its local memory, and thus the P; may be accessing different

17

memory locations, even though they are all executing the same instruction. More complete
deﬁnitioné may be found in [Go-82].

The SIMDAG models “single-instruction stream, multiple-data stream” (SIMD)
parallelism, to use the terminology of [F1-66]; the WRAM models “multiple-instruction
stream, multiple-data stream” (MIMD) parallelism. Instead of having a single CPU
broadcasting instructions, a WRAM has an infinite sequence of processors, where each
processor executes its own copy of the program; processors may be executing different parts of
the program at any given time. As in the SIMDAG, communication is through a shared
memory.

There are a number of different varieties of WRAM-like models which differ
primarily in how read and write conflicts are handled. These models are discussed in [Vi-83].

Hardware Modification Machines (HMM’s) differ from SIMDAG’s and WRAM’s in
that processors communicate via an interconnection network which is constructed dﬁring the
course of the computation, instead of through a shared memory. (In addition, the processors
in HMM'’s are finite state machines, instead of RAM’s.)

Note that in all of these models, individual machines differ only in the program they
execute: that is, the only difference between two SIMDAG’s is the program stored in the CPU.
Thus, any parallel algorithm can be executed on a SIMDAG simply by changing programs. In
that sense, all of these models are general-purpose parallel computers.

Fortunately, all of these models are approximately equivalent, in the following sense:
if a given problem can be solved on one of these models in time T(n) using P(n) processors,
then it can be solved on any of the other models in time T(n)OtDlogOtLP(n) using
P(n)O(LT(n)O(1) processors. (Some models correspond much more closely than this suggests.)
These models of parallel computation are thus approximately equivalent in the same sense in

which models of sequential computation such as Turing machines and RAM’s are

18

approximately equivalent: fundamental classes of problems, such as the class of problems
solvable in polynomial time, remain the same regardless of which model is used.

In modelling parallel computation, we wish to model the situation in which the
number of processors is greater than the length of the input; however it is clear that any
physically-realizable parallel compufer will have to have a “feasible” number of processors.
For this reason, much complexity-theoretic research on parallelism has focused on the case in
which the number of processors is bounded by a polynomial in n, that is, P(n) = nO(_ If we
also restrict T(n) to be bounded by a polynomial in n, then we have that if a given problem can
be solved on one model of a general-purpose parallel computer in time T(n) using nOM)
processors, then it can be solved on any of the other models in time T(n)0(DlogOin using nOL)
processors.

Circuits

Since VLSI technology provides motivation for the study of large-scale parallelism, it
is natural to model that sort of parallelism using circuits. A circuit is a collection of AND, OR,'
and NOT gates and input and output nodes, along with an acyclic interconnection network
linking the gates to each other and to the input and output nodes. A function fis computed by
a family {C, : n = 1} of circuits iff each circuit C, has n input nodes and for every input x of
length n, C, outputs flx) when given input x. Some authors consider circuits of unbounded
fan-in and fan-out, while others restrict their attention to circuits of fan-in 2. Sometimes
primitive operations other than AND, OR, and NOT are considered. Perturbing the model in
this way does not affect complexity results very much; for instance a circuit of size S(n) with
unbounded fan-in and fan-out can be replaced by an equivalent circuit with fan-in and fan-out
2, where the size and depth of the new circuit are larger than the original circuit only by a

factor of log S(n).

19

A significant difference betweex;x circuit-based complexity and machine-based
complexity is that some arbitrarily complex and even undecidable sets have trivial circuit
complexity. For examplé, let S be any undecidable subset of {0}*. S is accepted by the circuit
family {C,} where C, accepts 07 if 02 € S, and acckept's nothing otherwise.

One way around this problem is to restrict attention to families of circuits which can
be effectively or efficiently construct?ed. Since this amounts to requiring that there be a
uniform method of constructing the-members of a family of circuits, this is called a uniformity
condition: {C,}is a DSPACE (S(n))-uniform (DTIME(T(n))-uniform) family ofcircdits if the
function n — C, is computable in space S(n) (time T(n)).

- Work on uniform circuit complexity has usually concentrated on the computation
done by the circuit, and effort has been expended to make sure that the computation of the
function n — C,, does not “overpower” the computation done by the cireuit C,. Thus Borodin
and others [Bo-77, Pi-79, Co-79}] considered DSPACE(log S(n))-uniform circuits of size S(n);
notice that any function whose output has size S(n) requires at least log S(n) space to compute.
Since most attention has been on circuits of “feasible” size, i.e., C,, has size nO(1), these studies
of uniform circuit complexity have concentrated on logspace-uniform families of circuits.

One pleasant aspect of the logspace-uniformity condition is that time and number of
processors on a general-purpose parallel computer correspond to depth and size of logspace-
uniform circuits.

Propeosition 1.5: (See, e.g., [Ho-801.)
Let T(n) be bounded by a polynomial in n. Then a function can be computed on a
SIMDAG using nO(processors in time T(n)ODlogObin iff it can be computed by a

logspace-uniform family of circuits {C,} of size nOtD and depth T(n)ODlogOtlin,

Thus the two major competing models of parallel computation, general-purpose

parallel computers and circuits, are very closely linked. This can be taken as evidence that

20

both models are essentially "c.orrect,” and that, e.g., problems with very fast feasibly-parallel
solutions on one model will also have fast parallel solutions on any other reasonable model of
parallel computation. As further evidence that the classification of the complexity of
problems using these models is robust, we offer the following.

Proposition 1.6: Let T(n) be bounded by a polynomial in n. Then

SIMDAG Processors (nO(1)) Time (T(n)0(logOtlin)

= logspace-uniform circuit Size (nO1)) Depth (T(n)O(DiogO1in) {Ho-80]
= Turing machine Time (nO(1)) Reversal (T(n)0(DlogO(Lin) ' [Pi-79]

= Alternating Space (nO() Time (T(n)O(LlogO(Ln) [Ru-81]
= Alternating Space (nO(1)) Alternation (T(n)0(DlogO(lin) [Ru-81}
= Alternating Space (nO(1)) Treesize (T(n)0(D]ogO(1)n) [Ru-80]
= NAuxPDA Spéce (nO(1) Time (T(n)O(LilogOin) [Ru-80|
= DAuxPDA Space (nO1)) Time (T(n)OtLlogOthin) [Ru-80}

(Concepts such as alternating Turing machines and auxiliary pushdown automata
will be discussed later.)

Two other models of parallel computation, conglomerates [Go-82] and aggregates
{DC-80] have also been studied. They are similar to circuits, except the interconnection
networks need not be acyclic, and nodes in the networks are RAM’s instead of gates. An
interesting feature of the aggregate model is that networks of size less than n can be
considered. Aggregates and conglomerates with logspace-uniform networks of size nO(D
compute the same functions in time T(n)0tDlogO(Lin as logspace-uniform circuits of size nO(D
and depth T(n)0(hlogOtlin,

NC
The class NC has has received a great deal of attention recently. NC is intended to

model the class of problems for which essentially optimal parallel algorithms exist.

21

Note that if a function can be computed in parallel using P(n) processors in time T(n),
then the problem can be solved on a sequential computer in time aproximately T(n)P(n).
Thus, if the fastest sequential algorithm for a problem requires time T(n), the fastest parallel
solution using P(n) processors one can hope for is T(n)/P(n).

If a problem can be solved in time nO(1) on a Turing machine, and one wishes to find a
fast parallel algorithm for the problem using nO(1) processors, in principle, one could hope to
find a parallel solution which runs in O(1) time. While that makes sense on some models of
parallel computation (e.g., SIMDAG’s and unbounded fan-in circuits), on some other models,
such as circuits of fan-in 2, very little can be computed in time less than log n. Defining a
class of problems to be the class which can be solved in time log n using nO(1) processors runs
the risk of being overly dependent on the particular model of parallel computation which is
being used. However, as Proposition 1.6 shows, a “fudge factor” of logOl)n is sufficient to
cover over any idiosyncrasies of the individual models of parallel computation. It is for these
reasons that NC is defined as the class of functions which can be computed by logspace-
uniform families of circuits of size nO(1) and depth logOt)n.

The name “NC” stands for “Nick’s Class.” The name was proposed by Cook [Co-79] in
recognition of the contributions of [Pi-79].

PUNC

The discussion thus far has been intended to motivate the definition of NC and to
review some relevant results. At this point, however, we wish .to present evidence that NC
inadequately models the notion of “feasible paralleiism”; this will in turn motivate the
definition of a new complexity class, PUNC. Results presented in this thesis show that PUNC
has many of the same pleasing theoretical properties which have been used to motivate NC.

NC has very pleasant characterizations in terms of the various models of general-

purpose parallel computers which have been proposed. However, those models all share one

22

curious feature. As has been observed before [Go-82, Co-81, DC-80], the various models of
general-purpose parallel computers can be thought of as building their own interconnection
networks during the course of the computation. In the characterization of NC in terms of
HMMs, this is particularly evident. NC can thus be viewed as the class of problems for which
fast “self-organizing” feasibly-parallel solutions exist. We argue that the “self-organizing”
condition is an unnatural restriction.

Consider the characterization of NC in terms of circuits. We argue that the logspace-
uniformity condition of NC is unnatural. In modelling the class of problems for which
extremely fast circuits can be built, it makes sense to consider families of circuits {C,} such
that the function n — C,, is feasible; i.e., we wish to model computation by circuits such that
there is some method of building circuits for inputs of size n in a reasonable amount of tixﬁe.
The natural way to model this in complexity-theoretic terms is P-uniformity: the family of
circuits {C,} is P-uniform iff the function n — C, is computable in time polynomial in n.
(Comments similar to these were made in [BCH-84, vzG-84], where P-uniform circuits of
depth logn and log2n were presented for a variety of problems.) This gives rise to the class P-
Uniform NC (PUNQ), the class of functions for which there exists a P-uniform family of
circuits {C,} of size polynomial in n and of depth logOttin,

PUNC has not been studied before (although P-uniform circuits were considered in
[BCH-84, vzG-84]), and the following reasons may partly explain why. First, NC has many
alternate characterizations, and the study of NC has given rise to a pleasing theoretical
structure [Co-83]. This can be taken as evidence that NC is the “right” setting in which to
study parallelism. Second, many consider uniformity conditions to be ungainly; for instance,
Cook [Co-81], in discussing HMM'’s, cites as an advantage the fact that the HMM mode! has
no uniformity condition, and Ruzzo [Ru-81] cites as undesirable the situation in which the -

circuit constructor is more powerful than the circuit. [t may have been assumed that P-

23

Uniform NC was an awkward concept, a class unlikely to have pleasing alternate
characterizations. In Chapter 3, we give alternate charactizations of PUNC in terms of
auxiliary pushdown automata and alternating Turing machines.

Recall that NC has a very appealing characterization in terms of general-purpose
parallel computers. One might suppose that, because so much power has been pldced in the
pre-processing phase, problems in PUNC might be solvable only by “special-purpose” chips.
However, in Chapter 3 we present a natural model of general-purpose parallel computation
on which PUNC is the class of problems solvable using nO(processors in logOtbn time.

We also prove results about the relationship between PUNC and N’C ; for instance:
Theorem 3.7: NC = PUNC & every tally language in P is in NC.

(A tally language is a subset of {0}*.) This leads to results about exponential-time complexity
classes.

These results also clarify the complexity of one-way auxiliary pushdown automata,
which have been studied before in [Br-77a, Br-77b, Ch-77, WB-79, We-80]. Some restrictionsv
of AuxPDA’s have been shown not to affect severely the complexity of the languages they
accept; in [Ga-77} a two-way deterministic (one-head) PDA is presented which accepts a
language which is hard for P under logspace reductions. Some other restrictions have been
shown to be more limiting; in [Ki-81a, We-79] it was shown that logspace-bounded AuxPDA’s
whose pushdowns make at most a constant number of turns accept only languages in NLOG,
and Ruzzo [Ru-81] showed that AuxPDA’s which run in time 20g°"n accept only languages in
NC. Here we show that AuxPDA’s which move their input heads at most 2l0g%"'n times accept
exéct;ly the languages in PUNC, and thus it seems unlikely that any such machine accepts a

language which is hard for P.

24

CHAPTERII

Preliminaries

The reader is assumed to be familiar with deterministic and nondeterministic Turing
machines and with the basic notions of time and space complexity. A good introduction to this
material can be found in [HU-79].

v Alternating Turing machines are a generalization of nondeterministic Turing
machines. Ceonfigurations of nondeterministic Turing machines are analogous to existential
quantification, since a configuration is accepting if there exists an accepting computation
starting from that configuration. Alternating Turing machines result when configurations
analogous to universal quantification are also considered; a configuration is either universal,
in which case it accepts iff all computations rooted at that configuration accept, or it is
existential. The term “alternation” refers to the alternation between universal and
existential configurations which occurs along the computation paths.

Alternation has proved to be a useful concept in complexity theory, particularly in
explicating the difference between time and space complexity; for instance, P is equal to the
class of languages which can be accepted by logspace-bounded alternating Turing machines
[CKS-81]. Further results and more precise definitions relating to alternation may be found
in [CKS-81].

Auxiliary pushdown automata (AuxPDA’s) are very closely related to alternating
Turing machines, and were studied before the concept of alternation had been formulated. An

AuxPDA is a space-bounded Turing machine with a pushdown store; the space bound does not

25

apply to the pushdown store. ‘ Space and time on an AuxPDA correspond closely to space and
time on an alternating Turing machine; a lar;guage is accepted by an alternating Turing
machine in space S(n) and time T(n)O) iff it is accepted by a (deterministic or
nondeterministic) AuxPDA in space S(n) and time 2T(1°Y [Ru-80]. We may use the term
NAuxPDA (DAuxPDA) to refer to nondeterministic (deterministic) auxiliary pushdown
automata.

A circuit for inputs of size n is a finite collection of AND, OR, and NOT gates, output
gates, and n input nodes, along with an acyclic interconnection network linking the gates to
each other and to the input and output nodes. We will not distinguish between a circuit and
its description in some suitable description language. The size of a circuit is the number of
gates it contains. The depth of a circuit is the length of the longest path in the network from
an input node to an output node.

A family of circuits is a set {C, | n € N} where C, is a circuit for inputs of size n. {C,}is
a DSPACE(S(n))-uniform (DTIME(T(n))-uniform) family of circuits if the function 1n—C,, is
computable on a Turing machine in space S(n} (time T(n)).

{Cr} computes the function f. {0,1}*—{0,1}* if, for every word w of length n, the output
nodes of C, take on the values flw) when the input nodes take on the values of w. {C,}is a
family of circuits for L C {0,1}* if {C,;} computes the characteristic function for L.

Background, and more detailed discussions of circuit complexity, may be found in {Bo-
77, Ru-81].

If w is a string, then wt denotes the string which consists of { copies of w; thus 04 =
0000. The length of a string w is denoted by |w|. The cardinality of a set S is denoted by |S|.
For any real number x, Lx] denotes the greatest integer less than or equal to x, and x1

denotes the least integer greater than or equal to x. All logarithms are taken base two.

When referring to classes of functions, we make frequent use of “big O” abbreviations.

For example, we write Ain) = logOn iff ln) < klogkn + k for some &, An) = 200 iff An) <
fln) = k2kn + kfor some k, etc. In addition, fln) = o(g(n)) iff for all integers % there exists an
ng such that n > n; = kfin) < g(n), and An) = w(g(n) iff for all integers % there exists an ny
such that n > np = An) > kg(n).

Alanguage Lis sparse if {w€ L| n = |wl|}| is nOO); L is a tally language if L C {0}*.

In order to use strings in {0,1} to represent numbers and vice-versa, we use the
standard method of letting the string w denote the number whose binary rep;'esentation is
1w. Thus the empty string denotes 1, “0” denotes 2, etc. We shall often refer to languages L C
{0, 1, #}*. This is merely a notational convenience; such an L should be thought of as a subset
of {00, 11, 01}*.

A configuration of a Turing machine M is a tuple (q,w,i,l,a,b), where q is a state of M,
w is a string of worktape symbols (the worktape contents), i is an integer (the input head
position), j is an integer (the output head position), [is an integer, 1 < [< |w| (the worktape
head position), a is the i-th input symbol, and b is the j-th output symbol. As usual, the
relation C; Cg holds if M, in configuration Cy can enter Cy in one move. F* is the
reflexive, transitive closure of .

We will use the following abbreviations.
P = DTIME(nO1))

NP = NTIME(nO(1)

EXPTIME = DTIME(20(n)
NEXPTIME = NTIME(20(n)

DLOG = DSPACE(logn)

NLOG = NSPACE(log n)

PSPACE = DSPACE(rO1)

27

AuxPDA(S(n)) = the class of languages acepted by auxiliary pushdown automata with
worktape bounded by S(n)

DTIME,SPACE(T(n),S(n)) = the class of languages accepted by deterministic Turing
machines which operate simultaneously in space S(n) and time T(n)

ASPACE, TIME(S(n),T(n)) = the class of languages accepted by alternating Turing
machines which operate simultaneously in space S(n) and time T(n)

ASPACE,ALTERNATION(S(n),T(n)) = the class of languages accepted by alternating
Turing machines which operate in space S(n) where the number of
alternations between universal and existential states along any
computation path is bounded by T(n).

ASPACE,TREESIZE(S(n),T(n)) = the class of languagés accepted by alternating Turiﬁg
machines which operate in space S(n), such that, if an input of length n is
accepted, it is accepted by an accepting computation tree of size T(n).

AuxPDASPACE,TIME(S(n),T(n)) = the class of languages acepted by auxiliary
pushdown automata which operate in time T(n) with worktape bounded
by S(n)

C-uniform SIZE,DEPTH(S(n),D(n)) = the class of languages for which there exists a
C-uniform family of circuits of size bounded by S(n) and depth bounded
by D(n), where C is some time- or space-complexity class.

NC = DLOG-uniform SIZE,DEPTH(nOt1) 1o0gOt1in)

SC = DTIME,SPACE(n0(1),1ogOtlin)

(SC stands for “Steve’s Class”; SC was named by Pippenger (see [Ru-81)) in

recognition of the contributions of [Co-79].)

28

Note that NC is defined as a class of languages. It is sometimes convenient to consider
NC to be a class of functions; a function fis in NC iff there is a logspace-uniform family of
circuits computing f.
Proposition 2.1: [Co-83] A function fis in NC iff {i#x| the i-th bit of Ax)is 1} is in NC.

Some relevant facts about these complexity classes are listed below:

Proposition 2.2:
P = ASPACE(logn) [CKS-81]
= AuxPDA(logn) [Co-T1]
= DLOG-uniform SIZE,DEPTH(nO1) n0(1)) [Pi-79]
= P-uniform SIZE,DEPTH(nO1),n0(1)) - [Sa-72]
EXPTIME = ASPACE(n) [CKS-81]
= AuxPDA(n) [Co-71]
= DSPACE(n)-uniform SIZE,DEPTH(20(n) 20tn)) [Bo-77, PF-79, Ru-81]
= EXPTIME-uniform SIZE,DEPTH(20(n) O(n))
NC = ASPACE,TIME(log n,logO(1)n) [Ru-81]
= ASPACE,ALTERNATION(log n,log0tlin) [Ru-81]
= ASPACE,TREESIZE(log n,2log%"n) [Ru-81]
= AuxPDASPACE,TIME(log n,2log%"n) [Ru-81]

DSPACE(logOtbn) = ATIME(logO()n) PSPACE = ATIME(nO) [CKS-81]

29

CHAPTER III

Characterizations of Parallel Complexity Classes

The class of problems (languages) for which extremely fast parallel algorithms can be
efficiently constructed is a class of some interest. As outlined in the introduction, PUNC is an
attempt to capture this class in complexity-theoretic terms.

Although PUNC is defined as a class of languages, we may also say that a function fis
in PUNC. Itisclear what is meant by this.

PUNC is a robust class in the sense that it is not overly dependent upon idiosyncracies
of the circuit model. [n particular, if we allow circuits with unbounded fan-in, or if we
consider P-uniform networks of RAM’s or finite-state machines, the same class of languages
results. Similarly, we could have defined PUNC in terms of aggregates [DC-80] or
conglomerates [Go-82] with P-uniform interconnection networks.

Theorem 3.1:
Lisin PUNCiff
L is accepted by an aggregate with a P-uniform interconnection network iff

L is accepted by a conglomerate with a P-uniform interconnection network.

PUNC is also closed under a broad class of reducibilities.

30

Theorem 3.2:
PUNC is closed under logspace reductions (defined in [Jo-75]) and NC; reductions
(defined in [Co-83)).

If fisin PUNC, Lis in PUNC, and forallw, w € L' & flw) € L, then L’ is in PUNC.

Thus PUNC has a robust definition in terms of circuit-based models of parallel
computation. In the rest of this chapter we will présent characterizations of PUNC in terms of
some sequential models of computation, and also in terms of general-purpose parallel
computers. Results about the relationships which hold between PUNC and other complexity

classes will also be presented.

Auxiliary Pushdown Automata and Alternating Turing Machines

In order to consider alternating Turing machines of sublinear time complexity (which is
necessary in order to characterize NC in terms of alternation) a special "random-access”
feature has to be contrived which allows alternating Turing machines to access specified bits
of the input in unit time. This is a powerful feature, and it makes sense to restrict its use. In
this section, we show that such a restriction in fact gives one way to characterize PUNC.
Another characterization is given by restricting how often AuxPDA’s may move their input
heads.

Theorem 3.3: The following are equivalent:
(1) LePUNC
(i) Lis accep.ted by a logspace-bounded deterministic AuxPDA which moves its input
head O(20g%"'n) times.
(iii) L is accepted by a logspace-bounded nondeterministic AuxPDA which moves its

input head O(2l0g%"n) times.

31

Proof:

(1) = (ii): Let L be accepted by a P-uniform family {C,} of circuits of depth logO(Ln.
Since the function n—C, is computable in polynomial time, the language L' = {0716 | the r-
th bit of C, is b} is in P, and is thus accepted by some logspace-bounded deterministic
AuxPDA. Thus, assuming a suitable encoding for circuits, one can easily see that a logspace-
bounded AuxPDA can carry out the following computation without moving its input head:
start with n and g written on the worktape, where g is the name of a gate in C,, and find the
inputs to g by obtaining the bits of C, one-by-one. Now let M be the logspace-bounded

AuxPDA which, on input w of length n, executes the following algorithm:

(1) Write n in binary on the worktape. {O(n) input head moves)
(2) g:= the output gate for C,,. (0 input head moves)
(3) call EVALUATE (g) :
EVALUATE(g)
if g is an input gate for input i
then read input position i (O(n) input head moves)

else let g1 and go be the inputsto g
store gg on the stack
ty ;= EVALUATE (gy)
put g2 on the worktape and store ¢; on the stack
to:= EVALUATE (g9)
use ¢y and ¢ to get the value of g

It is easy to verify that for circuits of depth r, the number of head moves performed by
the algorithm is O(n+ n2r). Since the depth of C,, is logOl)n, the number of input head moves
performed by M is 2log%n,

(iii) = (i): Let L be accepted by M, a nondeterministic logspace-bounded AuxPDA
which moves its input head at most 2l0g°"» times on inputs of length n. As Mager showed in
[Ma-69], we may assume without loss of generality that the height of the pushdown of M is
always < nlfor some [.

Let us de‘ﬁne a surface configuration of M to be a 5-tuple (q,x,i;,[,a), where q is a state

of M, x is a string of worktape symbols (the worktape contents), i is an integer, | < (< |y (the

worktape hedd position), I" is a pushdown symbol (the stack top), and a is an input symbol. We

now define a binary relation ~» between surface configurations: if C; = (q,x,i,I",a) and Cy =
(p.yJ.I',a) are surface configurations, then C; ~» Cg iff M, when started in state q with " on its
pushdown, x on its worktape, its worktape head on the i-th symbol of x, and its input head
scanning an a, can make some sequence of moves without moving its input head ending with
that same I" on top of the stack with M in state p with worktape contents y, and worktape head
position j. Surface configurations and relations similar to ~» have often been used before (e.g.,
[AHU-68, Co-71, Ki-81b]); the primary difference between the relation ~» and e.g. the
relation which was defined in [Co-71] is that here we are only concerned with pairs of surface
configurations which can be connected by a computation which leaves the input head fixed.

Let W(n) be the set of all surface configurations whose worktape contents have length
< log n. There is a polynomial-time algorithm which, on input 17, writes down all elements
of W(n) and then outputs all pairs of surface configurations (Cy,C9) such that C{ ~» Co. (A
simple variant of the algorithm used in [Co-71] will suffice.) Let us denote by A(n) the output
of this program on input 17 |

[t is now a simple matter to construct a nondeterministic AuxPDA M’ which, on
inputs of the form w#h(w]), runs in time 208°"n and accepts iff M accepts w. M’ uses the

following algorithm:

begin
C : = the initial surface configuration of M on input w
while C is not a halting configuration
Choose to either
(a) set C:= D, where (C,D) appears in the string to the right of the #, or
(b) setC:= D where D is the surface configuration of M after executing some
move which is legal from C
endwhile
accept iff C is an accepting state

To see that M’ runs in time 2108°"7 on inputs of the form w#h(|w]), note that there will

always be an accepting computation of M’ in which, between any two simulated moves of M in

33

which M moves its input head, all “pop” moves are performed before any “push” moves are
performed. (A “push” followed by a “pop” with né; intervening moves of the input head can be
simulated by choosing option (a).) Since the height of the stack is bounded by n! and since the
number of moves which can be performed without manipulating the stack is bounded by some
polynomial p(n), the number of moves performed by M’ between simulated moves of M in
which M moves its input head is no more than 2p(n)n!. Since M moves its input head 2log®Vn
times, the running time of M’ on inputs of the form w#h(|w|) is no more than 2p(n)ni2log®n =
2log®n, |

Now by Theorems 1 and 2 of [Ru-80], there is an alternating logspace-bounded Turing
machine which simulates M’, and on inputs of the form w#h(w|) runs in time logOtLin,
Clearly, this machine can be modified to run in time logO0(n on all inputs. Let L’ be the
language accepted by this machine. L' € NC, and thus there is a logspace-uniform family {D,}
of circuits for L'. Let r, = [w#h(wl])| for any string w of length n. Now {C,} is a P-uniform
family of circuits for L, where C,, is constructed by computing A(n) and D, ,and "hard-wiring”
h(n) into Dy, . | O

It is known that the relationship between alternating time and logspace-uniform
circuit depth is very close; letting NC# denote the class of languages accepted by logspacve-
uniform circuits of depth O(logkn) it was shown in [Ru-81] that NCk = ASPACE,TIME(log n,
logkn). for all £ = 2. Unfortunately, equality does not seem to hold for £ = 1. This is because
deterministic logspace seems to be more powerful than alternating log time, and thus a
logspace-computable function which constructs a circuit cannot be simulated in alternating
log time.

Ruzzo considered a number of uniformity conditions in [Ru-81], and showed that the
class NC remained the same even when defined in terms of much stronger uniformity

conditions than logspace uniformity (i.e., conditions which require not only that the functions

34

n — C, be computable in logspace, but that they be “easily” logspace computable). The
corresponding classes NCk seem sensitive to the uniformity condition, however. In particular,
he considered a uniformity condition which we will call Alogtime-uniformity, which
essentially requires that an alternating Turing machine be able to recognize pieces of the
interconnection network of C, in log n time, and he showed that Alogtime-uniform NCk =
ASPACE, TIME(log n, log#n). forall £ = 1.

What is going on in these results is that the part of the computation which constructs
the circuits is being “overpowered” by the rest of the computation. In order fo get sharp
results, a very strong and somewhat artificial uniformity condition must be used. As we shall
see, sharp results relating alternation and P-uniform circuit depth can be obtained by
"factorihg out” the part of the computation which constructs the circuits, instead of
“overpowering” it. Before that correspondence can be shown, however, there is one difficulty
which must be discussed.

It is clear that restricting motion of the input head is the natural way to restrict access
to the input for an AuxPDA. [t is less clear what the correct way is to restrict an alternating
Turing machine. Simply restricting the number of accesses to the input along any
computation path is not sufficient, since any alternating Turing machine which uses at least
logspace can be simulated efficiently by a machine which never accesses its input more than
once on any computation path. The reasonable ways of restricting access to the input seem to
be to restrict the computation which precedes any access of the input tape, and to restrict the
total number of nodes in the alternation tree which access the inp;_lt.

Definition: PUNCk = P-uniform SIZE,DEPTH (nO(1), O(log#n)), forall k = 1.
Theorem 3.4:
L € PUNCk & L is accepted by a logspace-bounded alternating Turing machine which

accesses its input only during the first Otlog#n) steps, for all £ = 1.

35

Proof: (The proof of this theorem is an adaptation of the proofs of theorems 3 and 4 in [Ru-
811)

(=) Let L be accepted by a P-uniform family {C,} of depth O(log*n). L is accepted by
the logspace-bounded alternating Turing machine M which operates as follows on inputs w of

length n:

(1) Existentially guess n and universally check the guess.
(2) p:= the empty string (p represents a path in {left-input, right-input}* leading away
from the output gate of C,,.)
(3) accept.bit:= 1
(4) repeat
guess the type ¢t € {AND, OR, NOT, INPUT} of the gate which is reached by
following the path p away from the output gate of C,, and universally check the
guess.
If t = AND, universally set p:= p.left-input and p : = p.right-input.
If t = OR, existentially set p: = p.left-inputand p : = p.right-input.
Ift = NOT, set p: = p.right-input; accept.bit : = accept.bit + 1 (mod 2).
If ¢t = INPUT, guess which input should be read and universally check the guess.
until ¢t = INPUT
Read the input and accept and halt iff the specified bit = accept.bit.

Since those parts of the loop in which M “universally checks a guess” can be performed
without accessing the input, it is clear that M accesses the input only during the first O(logkn)
+ O(logn) steps.

(<) Let L be accepted by a logspace-bounded alternating Turing machine M which
accesses its input only during the first T(n) = O(logkn) steps. We construct a circuit with
gates labeled (¢,a), where 0 < ¢ < T(n), and a is a configuration of M of length < logn + 1.
The output gate is (0,ap), where ag is the initial configuration of M. For each gate (¢,a),
connect‘ as inputs all gates (¢4 1,8) such that a8. Replace all gates (¢,a) where a is a
configuration reading the i-th input by input gates reading the i-th input. Replace all gates
(t,a) where ¢ > T(n) by a constant 1 or 0, depending on whether or not M accepts when started
in configuration a (note that M, when started in configuration a, does not consult its input).

Replace by a constant 0 all gates (¢,a) in which a is a configuration of length log n + 1. Each

36

remaining gate (¢,a) is either an AND gate or an OR gate, depending on whether a is a
universal or an existential configuration. 0

It is interesting to compare Theorem 3.4 to the characterization of SC given by
Sudborough in‘ [Su-83]. Sudborough considered both one-way and two-way loglogspace-
bounded alternating Turing machineé, and he showed that SC is the class of all problems
which are logspace-reducible to languages accepted by one-way loglogspace-bounded
alternating Turing machines. Thus both SC and PUNC are characterized in terms of space-
bounded alternating Turing machines with restriictked access to the input.

We close this section with two further characterizations of PUNC, the proofs of which
follow easily using the techniques used here and the results proved in [Ru-80] relating
AuxPDA’s and alternating Turing machines._

Theorem 3.5: The following are equivalent:

(i) L€PUNC

(ii) L is accepted by a logspace-bounded alternating Turing machine which accesses '

its input only during the first O(logO¢1)n) alternations.

(iii) L is accepted by a logspace-bounded alternating Turing machine which, if it

accepts an input, accepts via an alternation tree which contains O(210g%"'n) nodes

which access the input.

A General-Purpose Parallel Computer for PUNC

NC is the class of problems solvable using nO(l) processors in time logOtn on a
SIMDAG, on a WRAM, and on almost all of the many approximately-equivalent models of
parallel computation which have been proposed in the past few years. (For surveys, see [Co-
81, Vi-83].) This may be taken as evidence that NC truly captl;res the notion of efficient
parallel computation. However, we argued in Chapter 1 that PUNC, und not NC, bhetter

captures that notion, at least when one is trying to model the class of problems solvable

37

efficiently by special-purpose chips. Since SIMDAG's, WRAM’s, and the like are general-
purposé parallel computers, one might suspect that NC models general-purpose parallel
computation, and PUNC models special-purpose parallel computation. We show here that
that is not the case.

Models of general-purpose parallel computers such as SIMDAG’s and WRAM’s all
share the characteristic that they have infinitely many processors. Let us now take the
position that it makes just as much sense to provide infinitely many bits, where the bits are no
harder to produce than are the processors; i.e., the n-th bit can be produced in time polynomial
in n. This section explores the consequences of taking that position.

‘ A SIMDAG augmented with a sequence s consists of a SIMDAG along with an infinite
sequence of read-only global registers By, Bg, ..., where each B; contains the i-th bit of the
sequence s. When counting the number of processors used by a SIMDAG during a
computation, we include the number of registers B; accessed during the computation.
(Equivalently, we could let B; reside in processor P;.)

A sequence s is P-printable if the language {07 | the n-th bit of s is 1} is in P, that is, if
the n-th bit of s can be obtained in time polynomial in n. |

The reader should already suspect that L is in PUNC iff L is accepted using aO(D
processors in time logO()n on a SIMDAG augmented with a P-printable sequence. However,
we will prove more. There is a universal P-printable sequence si; such that L is in PUNC iff L
is accepted using nO(l) processors in time logOn on a SIMDAG augmented with sy.
Furthermore, sy has a natural and appealing definition.

For any language L, the characteristic sequence for L, si, is an infinite sequence of 0’s
and I’s such that the r-th character of sy is 1 iff r € L.

Now let U‘ be any language complete for EXPTIME under log-lin reductions.. (See,

e.g., [St-74].) For a concrete example, let U = {M#w#!uw|

M uaccepts w in time 20+ Dlwl} The

38

characteristic sequence sy is P-printable; to obtain the n-th bit, see if n € U in time 20UrD =

20dog n) = O,

Theorem 3.6: L € PUNC & L is accepted using nOtl) processors in time log®(lin on a
SIMDAG augmented with sg.

Proof: (<) If L is accepted using nk+#% processors in time logO1)n time on a SIMDAG
augmented with sy, then clearly there is a SIMDAG M’ which, on all inputs of the form
w#sy(Dsy(2)...sy(|wlk + &), runs in logOLn time and uses nO¢1) processors and accepts iff w €
L. M’ can be made to run in logQ(1)n time on all inputs and thus accepts a language L’ € NC.
Using a program that prints sy and a program constructing NC circuits for L', it is easy to
construct PUNC circuits for L.

(=>) Let L be accepted by a PUNC family of circuits {C,}. Clearly, there is a language
L' € NC such that w#Cj,| € L’ iff w € L. (This can be seen by consulting the proof of Theorem
3.3, or by a simple reduction to the “Shallow Circuit Value” problem defined in [Ru-81].)
There is a Turing machine M which on input n#r will accept iff the r-th bit of C,is 1, and M
runs in time nO) = 20(n#r). Now a SIMDAG augmented with sy on input w of length n may
simulate the SIMDAG which accepts L' on input w#C,. Whenever the r-th bit from C, is
required, consult register By 4, #r#1.4#- for the appropriate constant /. . Note that the number of

registers B; needed for inputs w of size n is bounded by a polynomial in n, since

M#n#r#ln#r|
is O(log n). O

Theorem 3.6 says that there is a single general-purpose parallel computer on which
all problems in PUNC can be solved quickly; thus this has somewhat the same flavor as the
results presented in [GP-83, Vi-84], in which efficient general-purpose parallel computers are
studied. Unfortunately, the practical utility of this result is limited since, as Rackoff has
pointed out |Ra-85], the number of registers B; needed is exponential in the size of the

program M.

39

Theorem 3.6 makes obvious the connection betwéen P-uniform circuits and
characteristic sequences of languages in EXPTIME. Other closely-related concepts are P-
recognizable real numbers (using the “standard left cut” definition in [Ko-83]) and P-
printable sets (sets S such that the function n = S N {w | n = |w|} is computable in time
polynomial in n [HY-84]). Also, P-printable sequences may be defined as sequences s such
that, for some & and M,, every prefix of s is in K,(log n, nk), where K (log n, n%) is the
“generalized Kolmogorov complexity” measure of [Ha-83]. For a related discussion, see [Ko-
84]. |

PUNC is simply NC augmented by a feasible amount of precomputation. Rackoff [Ra-
85] has observed that P-printable sequences can be used to formulate a complexity theory for
sequential computation with precomputzition. We discuss this further and present some new

results in Chapter 7.

Tally Languages and Complexity Classes

The complexity of languages in PUNC is intimately connected with the complexity of
tally languages in P. In this section we explore that relationship.
Theorem 3.7: NC = PUNC & all tally languages in Pare in NC & {0¢] i € U}isin NC.
Proof: (=) Clearly, all tally languages in P are in PUNC. Thus if NC = PUNC, then all tally
languages in P are in NC, and trivially {0¢|{ € U}isin NC.

(&) Assume {0¢| i € U}is in NC, and let L have a family of PUNC circuits {C,}. Let M
be a machine running in time 2U+ Un for some [which accepts input n#r iff the r-th bit of C,, is
1. That is, M#n#r#ln#r € U iff the r-th bit of C, is 1. Note that since {0¢|i € U}is in NC, an
AuxPDA with M#n#r#ln#r written on its worktape can decide in 2log”Vn time if
M#n#r#ln#r € U and hence obtain the r-th bit of C,,.

Clearly, there is a language L" € NC such that w#C), € L' iff w € L; let L" be accepted

by a logspace-bounded AuxPDA M’ which runs in time 2l0g®"n L is accepted by a logspace-

40

bounded AuxPDA M; which, on input w, simulates M’ on input w#C),|. Whenever the r-th
bit from Cj,| is required, M writes M#n#r#/n#r on its worktape, and in 2l0g%"n time obtains
the bit using the method outlined above. The total running time is 2log®"n. O

Ruzzo has recently proved some results with a flavor somewhat similar to this [Ru-
85]. He considers Up uniformity, where a circuit family {C,} is Ug-uniform if the function
n—C, is computable in space (depth of C,) [Bo-77, Ru-81]. Among other results, he shows
that if Ug-NCk C P for some k>1, fast simulations of space-bounded computations are
possible.

Tally languages have often been studied in conjunction with sparse sets, and the
techniques used here lead to some new results and observations about the class of sparse sets
in P. This is discussed in Chapter 6.

Relationships between PUNC and other complexity classes may be clarified by
making an analogy between “polynomial-level” complexity classes and “exponential-level”
classes. DLOG, NLOG, and P are analogous in this sense to DSPACE(n), NSPACE(n), and
EXPTIME, respectively. Recalling that NC = ASPACE,TIME(log n,logOt)n) and SC =
DTIME,SPACE(nO() logOtlin), we can define exponential-time analogs ENC =
ASPACE, TIME(n,nO1) and ESC = DTIME,SPACE(20(), n0(1)). The following proposition is
easily verified.

Theorem 3.8: ENC = AuxPDASPACE,TIME(n,27%")

ASPACE,ALTERNATION(n,n01)

i

I

DSPACE(n)-uniform SIZE,DEPTH(20(n) n0O1))

The natural exponential-time analog of PUNC turns out to be EXPTIME itself. Let
EUNC denote the class of all languages for which there exist EXPTIME-uniform circuits of
size 20(n) and depth nO1),

Theorem 3.9: EUNC = EXPTIME

41

Proof: Clearly EUNC C EXPTIME. Now let L € EXPTIME. In time 200 there is time to
write down all 27 strings of size n, test each one for membership in L, and build a circuit of
depth log n + log 27 = O(n) which accepts L. Thus EXPTIME ¢ EUNC. 1

The analogous complexity classes at the polynomial and exponential levels are

diagrammed in Figure 3-1.

DSPACE(n) NSPACE(n) e ENC EUNC = EXPTIME

ESC PSPACE

DLOG NLOG NC PUNC P
\SC j i DSPACE(log0(1n)

Figure 3-1: A line between two complexity classes indicates that the class on the left is contained in the class on
the right. The following inclusions are also known:
PC ENCNESC
PG EXPTIME
NLOG ¢ DSPACE(log®bn) ¢ DSPACE(R)
NSPACE(n) ¢ PSPACE

Collapse of two classes at the “polynomial” level implies collapse of the corresponding
exponential-time classes, because of the following result, of the type proved in [Bo-74]:
Theorem 3.10:

Let E; and E4 be the exponential-time analogs of Py and P», respectively, where E; C

Eo. Then E{ = Eq & every tally language in Py is in Py.

42

Collapse of complexity classes at the exponential level seldom implies collapse at the
polynomial level. However, Theorems 3.7 and 3.10 yield the following corollary.
Corollary 3.11: NC = PUNC & ENC = EXPTIME
That is, NC = PUNC is equivalent to the exponential-time analog of the NC = P question.

It is interesting to note in this regard that the exponential-time analog of the SC C
PUNC question has an affirmative answer. On the other hand, there is evidence that SC ¢
PUNC. In [Pi-81], Pippenger presents a pebbling argument as evidence that SC ¢ NC.
Loosely translated, Pippenger’s result shows that any logspace-bounded AuxPDA which tries
to solve the “Narrow Circuit Value Problem” by determining the value of each gate in the
circuitvby determing the values of its predecessors must run for Q(2n/logn) steps. In fact,
Pippenger proves the (marginally) stronger result that any such AuxPDA must make
Q(2nlog®n) moves which “consider the predecessors” of gates. If we assume that most such
moves must involve access to the input, thex;x Pippenger’s argument can be taken as evidence

that the Narrow Circuit Value Problem is not in PUNC.

