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Abstract. Much complexity-theoretic work on parallelism has focused on the class NC, which is defined
in terms of logspace-uniform circuits. Yet P-uniform circuit complexity is in some ways a more natural
setting for studying feasible parallelism. In this paper, P-uniform NC (PUNC) is characterized in terms
of space-bounded AuxPDAs and alternating Turing Machines with bounded access to the input. The
notions of general-purpose and special-purpose computation are considered, and a general-purpose
parallel computer for PUNC is presented. It is also shown that NC = PUNC iff all tally languages in P
are in NC; this implies that the NC = PUNC question and the NC = P question are both instances of
the ASPACE(S(n)) = ASPACE, TIME(S(n), S(n)°") question. As a corollary, it follows that NC =
PUNC implies PSPACE = DTIMEQ2""").

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices}: Models of Computation—
automata {e.g., finite, push-down, resource-bounded); bounded-action devices (e.g., Turing machines,
random access machines); relations among models; F.1.2 [Computation by Abstract Devices]: Modes
of Computation—alternation and nondeterminism; parallelism; relations among modes; F.1.3 [Com-
putation by Abstract Devices]: Complexity Classes—complexity hierarchies; reducibility and complete-
ness; relations among complexity classes; F.4.3 [Mathematical Logic and Formal Languages]: Formal
Languages—classes defined by resource-bounded automata
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1. Introduction

With the advent of very large scale integrated (VLSI), it has become feasible to
construct computers that exhibit massive parallelism; chips with thousands of
processors are no longer unimaginable. Motivated by the possibility of so much
parallelism, complexity theory has picked up the question of determining what
class of problems can be solved much more quickly in parallel than on sequential
computers. Much complexity—theoretic work in this area has focused on the class
NC, the class of all languages for which there exists a logspace-uniform family of
circuits {C,} of size polynomial in » and of depth log®"n. (Definitions of uniform-
ity, circuits, etc. will be given in a later section.)

Ruzzo [40] has shown that the class NC remains the same if stronger notions of
uniformity than logspace-uniformity are used. (See also [13] and [36] for more
results concerning notions of uniformity.) That is, if we require not only that the
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functions 1" — C, be logspace-computable, but that they must be “easily” logspace-
computable, there is no effect on the class NC. Indeed, if we define NC not in
terms of circuits, but rather in terms of interconnected processors (RAMs or finite-
state machines) we can do away with the uniformity condition entirely, as the
characterizations of NC in terms of HMMs [19], SIMDAGs [25], WRAMs [15],
etc. show. In this way, the “preprocessing” phase implicit in the logspace-uniformity
condition for circuits is side-stepped. As has been observed before [19, 22, 25],
these machines can be thought of as building their own interconnection network
during the course of the computation. In the characterization of NC in terms of
HMMs, this is particularly evident. NC can thus be viewed as the class of problems
for which fast “self-organizing” feasibly-parallel solutions exist. We argue that the
“self-organizing” condition is an unnatural restriction.

Let us now take the view that it is okay to pack as much computational power
into the preprocessing phase as is feasible. That is, we are interested in any problem
for which a fast circuit family {C,} exists, with the only stipulation being that the
function n — C, be feasible to compute. The natural formulation of this stipulation
in complexity theory is P-uniformity [8]; the family of circuits {C,} is P-uniform if
the function n — C, is computable in time polynomial in n. This gives rise to the
class P-uniform NC (PUNC), the class of languages for which there exists a P-
uniform family of circuits {C,} of size polynomial in # and depth log®"n.

PUNC has not been studied before (although P-uniform circuits of depth log
and log?n were considered in [8, 38, 43], and we list below some reasons that may
partly explain why. At the same time, we present the contributions of this paper
that, we believe, put PUNC on a more equal footing with NC.

First, NC has very nice characterizations in terms of general-purpose parallel
computers such as SIMDAGs, WRAMs, etc. The fact that logspace-uniform circuit
depth corresponds to parallel time on these machines has been taken as evidence
that NC is the “right” setting in which to study parallelism. In fact, one might
suppose that, because so much power has been placed in the preprocessing phase,
problems in PUNC might be solvable only by “special-purpose” chips. However,
in Section 5, we present a natural model of general-purpose computation on which
PUNC is the class of problems solvable using n°" processors in log?"n time.

Second, NC has many alternate characterizations in terms of other models of
computation. For example, Ruzzo [40] has shown that NC can be characterized in
terms of AuxPDAs and alternating Turing machines with simultaneous time and
space bounds. It may have seemed unlikely that PUNC would have similar
characterizations. Yet, in Section 4, PUNC is characterized in terms of AuxPDAs
and alternating Turing machines with simultaneous bounds on space and access
to the input. For instance, a language L is in PUNC iff it is accepted by a logspace-
bounded AuxPDA that moves its input head 2108”7 times.

Third, many researchers seem to have considered uniformity conditions to be
inelegant and ungainly. For example, Cook [19] in discussing HMMs, cites as an
advantage the fact that the HMM model has no uniformity condition, and Ruzzo
[40] cites as undesirable the situation in which the circuit constructor is more
powerful than the circuit. Uniformity conditions also cause some annoying diffi-
culties when relating alternating time to circuit depth. Let NC* denote the class of
languages accepted by logspace-uniform circuits of depth O(loghn). It was shown
in [40] that NC* = ASPACE,TIME(logn, log"n) for all k = 2. Unfortunately,
equality does not seem to hold for k = 1. This is because deterministic logspace
seems to be more powerful than alternating log time, and thus a logspace-
computable function that constructs a circuit cannot be simulated in alternating
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log time. It was suggested in [20] and [40] that uniformity conditions stronger than
logspace-uniformity be used so the equality NC* = ASPACE, TIME(log 1, log*n)
would hold for all k. Note that these results are obtained by essentially “overpower-
ing” the precomputation phase by making the uniformity condition very strong.
In this paper we take the approach of “factoring out” the precomputation phase
and dealing with it explicitly. In so doing, we show that close correspondences exist
between P-uniform circuit depth and appropriately-chosen machine resources. For
instance, we show that PUNCK is the class of languages accepted by logspace-
bounded alternating Turing machines that access their input only during the first
O(logkn) steps, for all k € N.

In Section 6, results are proved that clarify the relationship between PUNC and
NC and other complexity classes. The main result of this section is

NC = PUNC <« all tally languages in P are in NC.

In fact, we define a suitable notion of reducibility, =7 reducibility, and show that
there are tally sets complete for PUNC under <5 reductions.

The characterizations of PUNC also clarify the complexity of one-way auxiliary
pushdown automata, which have been studied before in [7], [11], [12], [17], [29],
[47], and [48]. Some restrictions of AuxPDAs have been shown not to have a
severe effect on the complexity of the languages they accept; in [23], a two-way
deterministic (one-head) PDA is presented that accepts a language that is hard for
P under logspace reductions. Some other restrictions have been shown to be more
limiting; in [32] and [46], it was shown that logspace-bounded AuxPDAs whose
pushdowns make at most a constant number of turns accept only languages in
NLOG, and Ruzzo [40] showed that logspace-bounded AuxPDAs that run in time
20e?Pn gocept only languages in NC. Here we show that logspace-bounded Aux-
PDAs that move their input heads at most 22" times accept exactly the languages
in PUNC, and thus it seems unlikely that any such machine accepts a language
that is hard for P. Also, since we show that each tally language in P can be accepted
by a one-way logspace-bounded AuxPDA, it follows that one-way logspace-
bounded AuxPDAs accept some sets that are complete for PUNC under <5
reductions.

Many of the results presented here are also contained in the author’s doctoral
dissertation [2], and were announced first in an extended abstract that appeared
as [4].

2. Preliminaries

We use the standard lexicographic ordering < on strings, | x| denotes the length of
the string x, and | §| denotes the cardinality of the set S. The empty string is
denoted by e. Logarithms are taken to the base 2.

A language is sparse if |{w € L||w| = n}| is bounded by a polynomial in #;
L is a tally language if L C {0}*.

In order to use strings in {0, 1}* to represent numbers and vice-versa, we use the
standard method of letting the string w denote the number whose binary represen-
tation is 1w. Thus for instance, we may write | w| = logw. We often refer to
languages L € {0, 1, #}*. This is merely a notational convenience; such an L
should be thought of as a subset of {00, 11, 01}*

The characteristic sequence for a language L is the infinite binary sequence b,
bs,...such that b, is 1 iff nisin L.
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A circuit for inputs of size n is a finite collection of AND, OR, and NOT gates,
and n input nodes, along with an acyclic interconnection network linking the gates
to each other and to the input and output nodes. We do not distinguish between a
circuit and its description in some suitable description language. The size of a
circuit is the number of gates it contains. The depth of a circuit is the length of the
longest path in the network from an input node to an output node.

A family of circuits is a set {C, | n € N} where C, is a circuit for inputs of size n.
{C,} is a DSPACE(S(n))-uniform(DTIME( T(n)-uniform) family of circuits if the
function n — C, is computable on a Turing machine in space S(n) (time (T(n)).

{C,.} computes the function [ {0, 11* — {0, 1}* if, for every word w of length n,
the output nodes of C, take on the values f(w) when the input nodes take on the
value w. {C,} is a family of circuits for L C {0, 1}*if {C, } computes the characteristic
function for L.

Background, and a more detailed discussion of circuit complexity, may be found
in [40].

When referring to classes of functions, we make frequent use of “big Oh”
abbreviations. For example, we write /(n) = log®Vn iff f(n) < k logkn + k for
some k, f(n) = 200 iff f(n) = k2" for some k, etc.

The reader is expected to be familiar with standard complexity classes such as
NP, P, etc. We use E to denote DTIME(29"), and NE to denote NTIME(Q29™).
DLOG denotes DSPACE(log n) and NLOG denotes NSPACE(logn). The reader
is also expected to be familiar with alternating Turing machines; the article [14]
should be consulted for definitions of concepts related to alternation.

Auxiliary pushdown automata (AuxPDAs) are due to Cook [18]. An AuxPDA
is a Turing machine with a pushdown store in addition to a worktape. When we
bound the space used by an AuxPDA, we bound only the space used on the
worktape; the space used on the pushdown store is “free.” Useful results about
AuxPDAs are summarized in [28]. We need the fact that the languages accepted
in time T(n)°" are precisely the sets accepted by log 7(n) space-bounded deter-
ministic and nondeterministic AuxPDAs [18].

The following easy proposition is not new, and is presented primarily to illustrate
a technique that will be used in the proof of Theorem 4.1.

PROPOSITION 2.1.  Every tally set in P is accepted by a deterministic one-way
logspace-bounded AuxPDA.

PROOF. Let L be a tally set in P. Then the set L’ = {#|0" € L} is in E. Thus,
by [18] there is a linear-space-bounded AuxPDA M accepting L’. The one-way
logspace-bounded AuxPDA accepting L will first scan across the input, keeping
track of the number of symbols read. After it has read the entire input, it will reject
if the input is not of the form 07 for some n. Otherwise, it will use its worktape,
with # written on it, to simulate both the input tape and the worktape of the linear-
space-bounded AuxPDA M, accepting iffne L’. U

Some notation will be needed for complexity classes defined by simultaneously
bounding more than one resource. C-uniform SIZE.DEPTH(S(n), (T(n)) is the
class of languages for which there exists a C-uniform family of circuits of size
bounded by S(n) and depth bounded by T(n), where C is some time- or space-
complexity class. DSPACE, TIME(S(n), T(n)) is the class of languages accepted by
deterministic Turing machines which operate simultaneously in space S(xn) and
time T(n). ASPACE, TIME(S(n), T(n)) and AuxPDASPA CE, TIME(S(), T(n)) are
defined similarly for alternating Turing machines and AuxPDAs, respectively.
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The two most-studied complexity classes defined in terms of simultaneous
resource bounds are NC and SC:

NC = DLOG-uniform SIZE,DEPTH(1n?", log®"n),
SC = DSPACE.TIME(log®n, n°").

We make frequent use of the following characterization of NC.
THEOREM 2.2 [40]
NC = ASPACE,TIME(logn, log®"n) = AuxPDASPACE,TIME (logn, 2'%¢°"").

3. PUNC

The class of problems (languages) for which extremely fast parallel algorithms can
be efficiently constructed is a class of some interest. PUNC is an attempt to capture
this class in complexity-theoretic terms.

Definition 3.1. PUNC = P-uniform SIZE,DEPTH(n°", log®"n).

Although PUNC is defined as a class of languages, we may also say that a
function fis in PUNC. It is clear what is meant by this.

PUNC is a robust class in the sense that it is not overly dependent upon
idiosyncracies of the circuit model. In particular, if we allow circuits with un-
bounded fan-in, or if we consider P-uniform networks of RAMs or finite-state
machines, the same class of languages results. Similarly, we could have defined
PUNC in terms of aggregates [22] or conglomerates [25] with P-uniform intercon-
nection networks.

PrOPOSITION 3.2.  The following are equivalent :

(1) Lisin PUNC.

(2) L is accepted in time log® " n by an aggregate with a P-uniform interconnection
network.

(3) L is accepted in time log®Vn by a conglomerate with a P-uniform interconnec-
tion network.

Proposition 3.2 can be proved by a slight adaptation of the proofs given in [19]
and [21] showing how to simulate aggregates and conglomerates by circuit families.

PUNC is also closed under a broad class of reducibilities. The following defini-
tions introduce classes of reductions that are useful for studying PUNC.

Definition 3.3. A language L is NC-reducible to S (written L <Y S) iff there is
a logspace-uniform family of circuits {C,} of depth log ®Vn for L, where the circuits
{C,} are allowed to have oracle gates for S. An oracle gate for S is a node with
some sequence { g, £2, . . . , &) of input gates; the gate takes on the output value
1 if the string b, b, - -- b, € S, where b, is the value output by g;. For the purpose
of defining the depth of C,,, this oracle node counts as depth log r.

NC reductions are a straightforward generalization of NC' reductions, as defined
in [20]; the only difference is that NC' reductions are computed by circuits of
depth log n, whereas NC reductions may be of depth log“n for any k. Wilson has
also studied a similar generalization of NC! reductions; in [49], Wilson defines, for
any constant a, NC, reductions to be NC reductions computed by circuits of depth
log“n.
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NC reducibility is the natural NC restriction of <7 reducibility. In a similar way,
one can define the NC version of <7, reducibility:

Definition 3.4. (L =) S) iff there is a logspace-uniform family of circuits {C,}
of depth log?"n, computing a function f; such that for all w, w € L & f(w) €S.

In a similar way, we define <%”"N¢ and <}’ reductions, by changing the
logspace-uniformity condition to P-uniformity in each of the preceding definitions.
Note that every logspace reduction (as defined in [31]) is also a <, reduction,
computed by circuits of depth O(logn). Note also that the class of <PUNC reductions
clearly subsumes all of the other reduction classes considered here; thus the
following proposition implies that PUNC is closed under all of these reducibilities.

PROPOSITION 3.5. If'S € PUNC and L <4""° S, then L € PUNC.

Thus PUNC has a robust definition in terms of circuit-based models of parallel
computation. In the next two sections we present characterizations of PUNC in
terms of some sequential models of computation, and also in terms of general-
purpose parallel computers.

4. An Alternate Characterization of PUNC

In order to consider alternating Turing machines of sublinear time complexity
(which is necessary in order to characterize NC in terms of alternating time) a
special “random-access” feature has to be contrived, which allows alternating
Turing machines to access specified bits of the input in unit time. This is a powerful
feature, and it makes sense to restrict its use. In this section, we show that such a
restriction in fact gives one way to characterize PUNC. First, however, we present
another characterization by restricting how often AuxPDAs may move their input
heads.

THEOREM 4.1.  The following are equivalent

(1) L€ PUNC

(2) L is accepted by a logspace-bounded deterministic AuxPDA that moves its input
head OQ2'”"") times.

(3) L is accepted by a logspace-bounded nondeterministic AuxPDA that moves its
input head O(21<°"") times.

PROOF

(1) = (2): Let L be accepted by a P-uniform family {C,} of circuits of
depth log®?n. Since the function n — C, is computable in polynomial time, the
language {O" # g # [ # r| g is the name of a gate in C,, I € {1, 2}, and the rth bit
of the name of the ith input of g is 1} is also in P. Equivalently, the language
L’ = {n#g#i#r|gisthe name of a gate in C,,, i € {1, 2}, and the rth bit of the
name of the ith input of g is 1} is in E. (Here we are assuming a reasonable naming
convention, where the name of a gate has length O(logn); since there are only
polynomially many gates this is not a restriction.) By the results of [18], E is the
class of languages accepted by linear-space-bounded deterministic AuxPDAs; thus
there is a deterministic AuxPDA that can determine if n # g # i # r € L’ using
space linear in | 7| = O(logn). This implies that a logspace-bounded deterministic
AuxPDA with an input of length n, with n and g written on its worktape, can
compute the names of the gates g, and g, which are the inputs to g in C,. This
computation is done by determining if n # ¢ # i # r € L', for i € {1, 2} and
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1 = r = O(log n), which can be done by using the logspace-bounded worktape to
simulate both the input tape and the worktape of the linear-space-bounded
AuxPDA accepting L’. It is important to notice that this subcomputation can be
done by the logspace-bounded AuxPDA without moving its input head.

Now let M be the deterministic logspace-bounded AuxPDA that on input w of
length n, executes the following algorithm:

begin
write n in binary on the worktape. (O(n) input head moves)
g := the output gate for C, (0 input head moves)
call EVALUATE(g)
end
EVALUATE(g)
begin
if g is an input gate for input ¢
then return the value of input position | (O(n) input head moves)
else let g, and g, be the inputs to g (0 input head moves)

store g, on the stack
t; = EVALUATE(g,)
put g» on the worktape and store ¢, on the stack
t, ;= EVALUATE(g:)
use £, and /- to get the value of g
end

It is easy to verify that for circuits of depth r, the number of head moves
performed by the algorithm is O(n + n2"). Since thoe depth of C, is log®"n, the
number of input head moves performed by M is 2'°® ®n

(3) = (1). Let L be accepted by M, a nondeterministic logspace-bounded
AuxPDA that moves its input head at most 2'#”"® times on inputs of length .
As Mager showed in [34], we may assume without loss of generality that the height
of the pushdown of M is always < n' for some /.

Let us define a surface configuration of M to be a 5-tuple (g, x, i, T, a), where ¢
is a state of M, x is a string of worktape symbols (the worktape contents), i is an
integer, 1 </ < | x| (the worktape head position), T’ is a pushdown symbol (the
stack top), and a is an input symbol. We now define a binary relation — between
surface configurations: if C, = (¢, x, i, ', a) and C; = (p, y, J, I', a) are surface
configurations, then C, — C, iff M, when started in state g with I" on its pushdown,
x on its worktape, its worktape head on the ith symbol of x, and its input head
scanning an g, can make some sequence of moves without moving its input head
and without popping T, ending with that same T" on top of the stack with M in
state p with worktape contents y, and worktape head position j. Surface configu-
rations and relations similar to — have often been used before (e.g., [1], [18], and
[33]); the primary difference between the relation — and, for example, the relation
that was defined in [18] is that here we are only concerned with pairs of surface
configurations that can be connected by a computation that leaves the input head
fixed.

Let W(n) be the set of all surface configurations whose worktape contents have
length < logn. There is a polynomial-time algorithm that, on input 17, writes down
all elements of W(n) and then outputs all pairs of surface configurations (C,, ()
such that C;, — (5. (A simple variant of the algorithm used in [18] will suffice.)
Let us denote by A(#n) the output of this program on input 17,

It is now a simple matter to construct a nondeterministic AuxPDA A’ that, on
inputs of the form w # A(| w|), runs in time 2187 and accepts iff M accepts w.
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M’ uses the following algorithm:

begin
C ;= the initial surface configuration of M on input w
while C is not a halting configuration
Choose nondeterministically to either
(a) set C:= D, where (C, D) appears in the string to the right of the #, or
(b) set C:= D, where D is the surface configuration of A after executing some move
which is legal from C
endwhile
accept iff C is an accepting state
end

The idea of the algorithm is that M simulates M directly, except that at some
times M’ uses the information given by /(| w]) to skip a number of moves of M
that do not involve moving the input head.

To see that M’ runs in time 2'#”"* on inputs of the form w # (| w|), note
first that every move in which M moves its input head is simulated directly by M/,
by choosing option (b). We show that M’ makes at most n°" steps between any
two steps that simulate moves in which M moves its input head. The running time
of M’ will thus be o210,

Note that there will always be an accepting computation of M’ in which, between
any two simulated moves of M that move the input head, all “pop” moves are
performed before any “push” moves are performed. (All modifications to the stack
are made when choosing option (b); a “push” followed by a “pop” with no
intervening moves of the input head can be simulated by choosing option (a).)
Since the height of the stack is bounded by ', and since the number of moves that
can be performed without manipulating the stack is bounded by some polynomial
p(n), the number of moves performed by M’ between any two simulated moves
of M that move the input head is no more than 2p(n) = (n’). By the comments in
the previous paragraph, the running time of M’ will thus be pOMlee?in -
210e”Y on inputs of the form w # A(w).

Now by Theorems | and 2 of [39], there is an alternating logspace-bounded
Turing machine that simulates M ’, and on inputs of the form w # 4(w) runs in
time log?"n. Clearly, this machine can be modified to form a new machine M”
which runs in time log®"n on @l inputs, and accepts inputs of the form w # i(w)
iff they are accepted by M’ (iff w € L); note that M ” does not necessarily accept
the same language as M ’. Let L” be the language accepted by M ”.

L7 € NC, and thus there is a logspace-uniform family {D,} of circuits for L”.
Let r, = | w # h(n)| for any string w of length #n. Now {C,} is a P-uniform family
of circuits for L, where C, is constructed by computing A(n) and D, , and “hard-
wiring” A(n) into D, . [J

It is clear that restricting motion of the input head is the natural way to restrict
access to the input for an AuxPDA. It is far less clear what the correct way is to
restrict an alternating Turing machine. Simply restricting the number of accesses
to the input along any computation path is not sufficient, since any alternating
Turing machine that uses at least logspace can be simulated efficiently by a machine
that never accesses its input more than once on any computation path. The
reasonable ways of restricting access to the input seem to be to restrict the
computation that precedes any access to the input, and to restrict the total number
of nodes in the alternation tree that access the input.
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THEOREM 4.2. L € PUNCF & L is accepted by a logspace-bounded alternating
Turing machine that accesses its input only during the first O(log*n) steps, for all
k= 1.

Proor. (The proof of this theorem is an adaptation of the proofs of Theo-
rems 3 and 4 in [40].)

(=) Let L be accepted by a P-uniform family {C,} of circuits of depth O(log*n).
L is accepted by the logspace-bounded alternating Turing machine M that operates
as follows on inputs w of length n. (In the description of the following algorithm,
the phrase “universally check the guess” is an abbreviation for “enter a universal
state; along one branch verify that the guess is correct, and along the other branch
continue with the rest of the simulation.”)

begin
Existentially guess # and universally check the guess.
g := the output gate of C,,.
=
[p represents a path in {lefi-input, right-input} * leading away from the gate g.]
accept.bit 1= 1.
[accept.bit keeps track of the effect of NOT gates seen so far.]
repeat
Guess the type ¢ € {AND, OR, NOT, INPUT]} of the gate that is reached by following
the path p away from the gate g in C,, and universally check the guess.

if |p| =logn
then
[it is time to shorten the path, so no more than logn space is used]
Existentially guess the name / of the gate that is reached by following the path p
away from the gate g in C,, and universally check the guess.

]

pi=c¢
g:=nh
if t = AND, universally set p := p.lefi-input and p 1= p.right-input.
if 1 = OR, existentially set p := p.lefi-input or p := p.right-input.
if 1 = NOT, set p := p.right-input and accept.bit := 1 — accept.bit.
until / = INPUT
existentially guess the number i such that the ith bit of the input should be read, and
universally check the guess. Read the ith bit of the input and halt and accept iff the bit
that is read = accept.bit.
end

It is clear that M accepts its input iff the input is in L.

The only steps in the algorithm that access the input occur outside the loop;
each such step requires O(logn) time. The parts of the algorithm in which “M
universally checks a guess” can be performed without accessing the input. Thus
the number of steps that are executed before the input is accessed is O(logn) plus
the number of steps that are executed while inside the repeat loop.

The only steps that occur in the loop that take more than unit time are in the
“if | p| > logn” statement. These steps take O(logn) time, and are executed only
once every log # times through the repeat loop. Thus the total number of steps that
are executed on a path before the input is read is O(log n) plus some constant times
the number of times the repeat loop is executed. The number of times the repeat
loop is executed is bounded by the depth of the circuit. Thus M accesses its input
only during the first O(log“n) + O(log n) = O(log"n) steps.

(«=) Let L be accepted by a log space-bounded alternating Turing machine M
that accesses its input only during the first 7(n) = O(log*n) steps. We construct a
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circuit with gates labeled (7, «), where 0 < ¢ < T(n), and « is a configuration of M
of length < log n + 1. The output gate is (0, «p), where ay is the initial configuration
of M. For each gate (¢, @), connect as inputs all gates (z + 1, 8) such that « - 8.
Replace all gates (¢, o) where « 1s a configuration reading the ith input by input
gates reading the ith input. Replace all gates (¢, «) where ¢ = T'(n) by a constant 1
or 0, depending on whether or not M accepts when started in configuration « {(note
that M, when started in configuration «, does not consult its input). Replace by a
constant 0 all gates (¢, @) in which « is a configuration of length logn + 1. Each
remaining gate (, «) is either an AND gate or an OR gate, depending on whether
o 1S a universal or an existential configuration, respectively. [l

It is interesting to compare Theorem 4.2 to the characterization of SC given by
Sudborough in [42]. Sudborough considered both one-way and two-way loglog-
space-bounded alternating Turing machines, and he showed that SC is the class of
all problems that are logspace-reducible to languages accepted by one-way loglog-
space-bounded alternating Turing machines. Thus both SC and PUNC are char-
acterized in terms of space-bounded alternating Turing machines with restricted
access to the input. (See also [16] and [30] for more results about one-way
loglogspace-bounded alternating Turing machines.)

We close this section with two further characterizations of PUNC, the proofs of
which follow easily using the techniques used here and the results proved in [39]
relating AuxPDAs and alternating Turing machines.

THEOREM 4.3. The following are equivalent

(1) L € PUNC

(2) L is accepted by a logspace-bounded alternating Turing machine that accesses
its input only during the first log®Vn alternations.

(3) L is accepted by a logspace-bounded alternating Turing machine that, if it
accepts an input, accepts via an alternation tree that contains 2'¢°”® nodes
that access the input.

5. A General-Purpose Parallel Computer for PUNC

Existing parallel computation devices fall into one of two categories. Some are
special-purpose devices, which are built to compute some fixed function very
quickly. Other devices are programmable; there are several processors communi-
cating over some interconnection system, and the system can be programmed to
perform a variety of tasks. Let us call such devices general-purpose parallel
computers.

Circuit-based models of computation are an abstraction, the study of which is
motivated to some degree by the desire to understand the limitations and capabil-
ities of special-purpose circuits. The circuit model ignores certain technology-
dependent factors that affect the efficiency with which a given circuit design could
actually be implemented. In the same way, models of parallel computation such
as SIMDAGs, WRAMs, etc., are abstractions based on general-purpose parallel
computers. (See [44] for a survey of these models.)

NC is the class of problems using #°(" processors in time log®"n on a SIMDAG,
on a WRAM, and on almost all of the many approximately equivalent models of
general-purpose parallel computation that have been proposed in the past few
years. This has been taken as evidence that NC truly captures the notion of efficient
parallel computation. However, it was argued earlier in the paper that PUNC, and
not NC, better captures that notion, at least when one is trying to model the class
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of problems solvable efficiently by special-purpose chips. One might therefore
suspect that NC models general-purpose parallel computation, and PUNC models
special-purpose parallel computation. We show here that that is not necessarily
the case; PUNC can also be characterized in terms of general-purpose parallel
computers.

Models of general-purpose parallel computers such as SIMDAGs and WRAMs
all share the characteristic that they have infinitely many processors. These proces-
sors are nearly identical, but each processor has a register which stores its “name”,
or address. The model we propose here involves augmenting each processor with
a small amount of extra information, where the information given to each processor
is feasible to compute. The justification for this is that, in any physical implemen-
tation of a general-purpose parallel computer, there will be only finitely many
processors, and each processor will take some (feasible) amount of time to build.
If faster performance can be obtained by building extra information into each
processor, then that is sufficient reason to make such information available.

A SIMDAG augmented with a sequence s consists of a SIMDAG along with an
infinite sequence of read-only registers By, B,, . .., where each B; contains the ith
bit of the sequence. When counting the number of processors used by a SIMDAG
during a computation, we include the number of registers B; accessed during the
computation. To make this transparent, we consider that register B; resides in
processor P;.

A sequence S is P-printable if the language {0"| the nth bit of s is 1} 1s in P; that
is, if the nth bit of s can be obtained in time polynomial in n.

The reader should already suspect that L is in PUNC iff L is accepted using 7"
processors in time log®Vn on a SIMDAG augmented with a P-printable sequence.
However, we prove more. There is a universal P-printable sequence sy such that L
isin PUNC iff L is accepted using n°" processors in time log?"’n on a SIMDAG
augmented with a s;. Furthermore, s has a natural and appealing definition.

Let U be any language complete for E under log-lin reductions. (See, e.g., 411
For a concrete example, let U = {M # w #/*! | M accepts w in time 2/*"""1}. The

characteristic sequence sy is P-printable; to obtain the nthibit, see if n € U in time
20(In1) = Otogn) — O,

THEOREM 5.1. L € PUNC e L is accepted using n%Y processors in time
log®Pn time on a SIMDAG augmented with sy.

PrOOF

(=>) Let L be accepted by a PUNC* family of circuits {C,}. There is a Turing
machine M that on input n # r will accept iff the rth bit of C, is 1, and M runs in
time 790 and thus in time 2/'"*"! for some /. Let SVC* be the Shallow Circuit
Value problem (see [40]): SCV* = {w#(C|C is the description of a circuit of
depth =< log‘| w| and C outputs a 1 when given w as input}. SVC* € NC, and
w#C,, € SVCriff we L.

Now consider a SIMDAG augmented with s; that on input w, first constructs
w#C,,, in logarithmic time; the rth bit of C), may be obtained by consulting
register Byunsraien. After w#C), is constructed, the SIMDAG will accept iff
w#C|,, € SVC*. This second part of the computation takes time log®Vn, and thus
so does the entire computation. The number of processors needed for the second
part of the computation is polynomial, and the number of processors needed for
the first part is bounded by the number of registers B; that need to be consulted.
Since | M#n#r#/\"*"1 | = O(logn), only polynomially-many registers B; need to be
consulted.
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() If L is accepted using n* + k processors in time log?"n time on a
SIMDAG augmented with s, then clearly there is a SIMDAG M’ that, on all
inputs of the form w # sy(1) s¢(2) -+ sy(|w|* + k), runs in log®n time and
uses 12" processors and accepts iff w € L. M’ can be modified to run in log?"n
time on al/l inputs and thus accept a {possibly different) language L’ € NC. Using
a program that prints sy and a program constructing NC circuits for L', it is easy
to construct PUNC circuits for L. [J

Theorem 5.1 says that there is a single general-purpose parallel computer on
which all problems in PUNC can be solved quickly; thus this has somewhat the
same flavor as the results presented in [24] and [45], in which efficient general-
purpose parallel computers are studied. The difference between this result and
those results is that, in [24] and [45], a general-purpose general computer was
considered to be a parallel computer with some fixed, rather limited interconnection
network, that could take a program written perhaps for some other type of
interconnection network as input and simulate it, much as a universal Turing
machine does. Here, the efficiency of the simulation is not at issue since we are
not trying to simulate one type of one computer by another. Instead, we have
shown that there is one, fixed piece of “hardware” (namely, the SIMDAG aug-
mented with sy) on which any language in PUNC can be recognized in polylog
time using a polynomial number of processors.

P-printable sequences can also be used to give a characterization of PUNC that
is analogous to Pippenger’s result that NC is the class of languages accepted by
Turing machines that run in polynomial time and whose worktape heads make
only log®®n reversals [37]. Define a Turing machine augmented with a sequence
s to be a Turing machine with the infinite sequence s written on one of
its worktapes. The following result can be proved in almost the same way as
Theorem 5.1.

THEOREM 5.2. PUNC is the class of languages accepted by Turing machines
augmented with sy that run in polynomial time and whose worktape heads make
only log®Vn reversals. '

PUNC is simply NC augmented by a feasible amount of precomputation.
Some results dealing with precomputation in a more general setting were presented
in [4].

6. Tally Sets and PUNC

This section explores the relationship between PUNC and NC and other complexity
classes. In particular, the results in this section help to explain the nature of the
computational power added by P-uniformity over logspace-uniformity.

Note that by Proposition 2.1 and Theorem 4.1, every tally set in P is in PUNC.
(This is also easy to see directly.) Let T, = {0'| i € U}, where U is the complete set
for E used in the proof of Theorem 5.1. Note that T, is a tally set in P, and thus is
in PUNC.

THEOREM 6.1. T is complete for PUNC under <5< reductions.

PRrROOF. As observed above, Ty € PUNGC,; thus it suffices to show that every set
in PUNC is <}“-reducible to 7. Let L € PUNC. By Theorem 5.1, L is accepted
by a SIMDAG M augmented by s, which uses 79" processors and runs in log®*'n
time. The SIMDAG M defines a <} reduction, where the registers containing the
bits of s;; correspond to oracle gates for 7. U
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COROLLARY 6.2. The following are equivalent :

(1) L€ PUNC.
(2) L is =¥ reducible to Ty.
(3) L is =¥ reducible to some tally set in P.

PROOF. (1) => (2) follows from Theorem 6.1. (2) = (3) is obvious. (3) = (1)
because every tally set in P is in PUNC and PUNC is closed under =7¢
reductions. [1

Stated another way, Corollary 6.2 characterizes PUNC as the closure under NC
reductions of the class of tally sets in P.

COROLLARY 6.3. NC = PUNC < all tally languages in P are in NC < Ty is
in NC.

Proor. Immediate from Theorem 6.1 and from the fact that NC is closed
under <€ reductions. [

Ruzzo, in considering “Ug-uniformity” [40] (as opposed to P-uniformity), has
recently proved some results with a flavor similar to Corollary 6.3 (W. L. Ruzzo,
personal communication).

Much has been written about the consequences of sparse sets being complete for
NP and other complexity classes containing P; Mahaney [35] has written a good
survey of this area, including a large bibliography of papers dealing with this topic.
However, almost nothing is known about NLOG or P in this regard. It was shown
in [26] that no set complete for NLOG or for P under 1 — L reductions can be
sparse; that result was subsequently improved in different ways by [5] and [29].
Nonetheless, nothing seems to be known about the consequences of there being a
sparse set (or even a tally set) that is complete for NLOG or P under logspace
reductions. Since logspace reductions are a special case of NC reductions, the
following result remedies that situation.

COROLLARY 6.4. P = PUNC iff there is a tally set complete for P under <7
reductions.

PrOOF. If P = PUNC, then Ty is complete for PUNC, and hence for P, under
<€ reductions, by Corollary 6.2. On the other hand, if there is a tally set 7 € P
such that every set L € P is s};-c reducible to 7, then by Corollary 6.2 every set in
Pisin PUNC. [

The same techniques show that P is contained in nonuniform NC < there is a
tally set that is hard for P under s’;{c reductions <> there is a sparse set that is hard
for P under =) reductions. It is not known if P = PUNC is equivalent to there
being a sparse set complete for P under <7¢ reductions; it is easy to show that
equivalence holds if all sparse sets in P are in PUNC. Note in this regard that all
sparse sets have nonuniform log depth circuits.

Tally languages have often been studied in conjunction with other types of sparse
sets, and the results in this section can be generalized somewhat. One class of sparse
sets that has been studied in some detail is the class of P-printable sets (see, e.g.,
[6] and [27]). S is P-printable if the function 1”7 — S N {0, 1}" is computable in
polynomial time. Clearly, all P-printable sets are in PUNC, and most obvious
examples of sparse sets in PUNC are easily seen to be P-printable. Furthermore,
there are some obvious connections between P-printable sets, P-printable se-
quences, and P-uniform circuits. It is shown in [6] that a set is P-printable iff it is
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sparse and accepted by a one-way logspace-bounded AuxPDA; thus, in light of
Theorem 4.1 this suggests that perhaps all sparse sets in PUNC are P-printable.
This suggestion is misleading, however, as it is also shown in [6] that if there is any
sparse set in P that is not P-printable, then there is such a set in DLOG (and hence
in PUNC). Allender {3] presents other results related to the question of whether or
not all sparse sets in P are P-printable.

P-printable sets share most properties of tally sets. In the statement of Corol-
laries 6.2, 6.3, and 6.4, the word “tally” can be replaced by “P-printable” and
the results are still true.

We have no results relating to the question of whether or not all sparse sets in P
are in PUNC. However, the following result addresses a related issue.

THEOREM 6.5. E = NE < all sparse sets in NP are in PUNC.
PROOF

(=) In [27] it was shown that E = NE implies that all sparse sets in NP are
P-printable, and hence in PUNC.

(«=) If all sparse sets in NP are in PUNC, then all tally sets in NP are in P,
which implies that E = NE by [9]. O

There is yet one more interesting corollary to Theorem 6.1. Using the techniques
presented in 9], it is possible to interpret results about classes of tally languages as
results about “higher” complexity classes. Thus those techniques easily yield the
following result.

COROLLARY 6.6. NC = PUNC iff ASPACE,TIME(n, n°") = ASPACE(n).

Since NC = ASPACE,TIME(logn, log®"n) and P = ASPACE(logn), Corol-
lary 6.6 says that the NC = PUNC question and the NC = P question are both
instances of the more general question of whether or not ASPACE, TIME(S(n),
S(n)°My = ASPACE(S(n)); in many regards they are essentially the same question.
Since ASPACE(n) = E, Corollary 6.6 says that the NC = PUNC question is
equivalent to the exponential-time analog of the NC = P question.

COROLLARY 6.7. NC = PUNC = PSPACE = DTIME(2"°").

Proor. It suffices to show that NC = PUNC implies DTIMEQ2" ") € PSPACE.
By Corollary 6.7, if NC = PUNC, then E = ASPACE,TIME(n, n°") C
ATIME(#°") = PSPACE. Since everything in DTIME(2"*") is <” reducible to a
set in E, and PSPACE is closed under <’ reductions, the result follows. [

oy

Indeed, the logspace-uniform circuit complexity of sets in PUNC seems closely
tied to the complexity of sets in PSPACE. Corollary 6.7 shows that if NC = PUNC,
then PSPACE contains very complex sets. On the other hand, if PSPACE = P,
then PUNC contains sets that require large depth on logspace-uniform circuits, as
the following result shows.

PROPOSITION 6.8. If PSPACE = P, then PUNC is not contained in DLOG-
uniform SIZE, DEPTH(n°", n*) for any k.

Proor. If PSPACE = P, then DSPACE(2°") = E, and thus (by the space
hierarchy theorem) for all k, there is some set L in E that is not in DSPACE(2*").
Letting 7, = {0"| n € L}, we have (using the techniques of [9]) that T, is in P but
not in DSPACE(#*). Clearly, T} is in PUNC; however, by [10], 7, does not have
DLOG-uniform circuits (or even DSPACE(#*)-uniform circuits) of depth n*.
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7. Open Problems

Theorem 5.1 holds the promise of having practical applications, since it tells how
to build a general-purpose parallel computer that can efficiently solve any problem
for which a special-purpose chip can be built. Unfortunately, the practical utility
of this result is limited since, as Rackoff has pointed out (C. Rackoff, personal
communication), the number of registers B; needed, although polynomial in the
size of the input, is exponential in the size of the program M that builds the special-
purpose chip. It would be nice to know if the proof can be improved so the constant
factoris not so overwhelming. Alternatively, it might be possible to use Kolmogorov
complexity arguments to show that no real improvement is possible. Such a result
would show that there is, indeed, a real difference between special-purpose and
general-purpose parallel computation.

Although we have shown the existence of sets complete for PUNC under
SI;C reductions, it is not known if there are sets complete for PUNC
under <N¢ reductions. Note that for most complexity classes with complete sets,
there are so-called “standard” complete sets, which are obviously complete under
logspace reductions. Since every logspace reduction is computable by NC? circuits,
it is easy to show that if PUNC has a set complete under logspace reductions, then
PUNC = PUNC* for some k; thus PUNC probably has no “standard” complete set.
We conjecture that there are no sets that are complete for PUNC under <)
reductions.

Is there any evidence for the existence of sparse sets in P (or in SC) that are not
in PUNC?

Are there any “natural” problems that seem to be in PUNC-NC?
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