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This paper introduces a type of generalized Kolmogorov complexity and uses it as a tool to
explore the consequences of several assumptions about the existence of secure pseudorandom
generators. It is shown that if secure generators exist, then there are fast deterministic
simulations of probabilistic algorithms; the nature of the simulations and the class of
probabilistic algorithms for which simulations can be exhibited depends on the notion of
“security” which is assumed. One goal of the investigation begun here is to show that many
important questions in complexity theory may be viewed as questions about the Kolmogorov
complexity of sets in P. € 1989 Academic Press, Inc.

1. INTRODUCTION

A pseudorandom generator is an efficient routine which takes a short input
(the seed) and produces a long (pseudorandom) output. Since the pseudorandom
output is produced efficiently from a short input, the output of a pseudorandom
generator consists of strings of low generalized Kolmogorov complexity. If the
pseudorandom generator is secure, then feasible adversaries are unable to
distinguish truly random input from pseudorandom input. Thus the existence of
pseudorandom generators says something about the ability of feasible processes to
distinguish strings of high and low generalized Kolmogorov complexity.

Building on the intuition in the preceding paragraph, this paper examines several
hypothesis about the security of pseudorandom generators and derives for each
hypothesis a necessary condition in terms of Kolmogorov complexity. Using these
conditions, a number of new results are proved which relate the security of
pseudorandom generators to the existence of fast deterministic simulations of
probabilistic computations.

The following two hypotheses are common in work relating to pseudorandom
number generation:
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HypoTHESIS 1. There exist generators which are secure against probabilistic
polynomial time statistical tests.

HypoTtuesis 2 (The strong hypothesis). There exist generarors which are secure
against P/poly statistical tests.

In his fundamental paper [39], Yao considered both hypotheses. Most of the
results of [39] were stated in terms of Hypothesis 1. However, in order to prove
results about probabilistic complexity classes, the stronger hypothesis was needed.
Yao’s result, as improved by [12], states that

Hypothesis 2 = ¥z >0 BPP = DTIME(2").

It is not known if Hypothesis 2 can be replaced by Hypothesis 1 in this result.
However, a result with a somewhat similar flavor is proved in Section 6:

Result: Hypothesis 1 = V¢ >0 BPTIME(2°") < DTIME(Q22").

One of the major thrusts of this investigation involves the consideration of the
existence of generators which are secure against probabilistic adversaries which are
allowed more than polynomial time. There are a number of reasons for doing this:

1. Certain relationships between Kolmogorov complexity and pseudorandom
generators become clearer when strong notions of security are used.

2. Proof techniques which are useful for studying pseudorandom generators
under polynomial-time security assumptions seem to be different from the techni-
ques which are useful for studying pseudorandom generators which are secure
against more powerful adversaries.

3. Little is known about which security assumptions are reasonable and
which are too strong. By examining strong assumptions about security, we can
hope to identify which assumptions are reasonable.

4. In some cryptographic applications of pseudorandom generators, it may
be advisable to consider adversaries who have more than polynomial-bounded
resources.

To this end, we consider new hypotheses, Hypothesis 3 and Hypothesis 4, which
(informally) say that there exists some ¢>0 and some pseudorandom generator
which is secure against all statistical tests computable by probabilistic 2% time-
bounded machines, or circuits of size 2%, respectively. We show that Hypothesis
3= RTIME(29?") = DTIME(2°"*"), and Hypothesis 4 = RP =P,

If one believes that probabilistic computation is more powerful than deterministic
computation, then these results can be taken as evidence that Hypotheses 3 and 4
are unlikely to be true. On the other hand, it should be noted that some researchers
have conjectured that RP =P [9].
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Although Hypothesis 3 is very strong, we note that it is probably not strong
enough to imply Hypothesis 2.

Since the proofs of these results use intermediate lemmas about Kolmogorov
complexity, we are able to prove a number of other results about the structure of
complexity classes, under the assumption that secure generators exist. For example,
we show that Hypothesis 3 implies that every dense set in RP has an infinite

... P-printable subset. Thus, for instance, our results show that there is an infinite

P-printable set of primes, assuming that very secure pseudorandom generators
exist. (Note in this regard that it has only recently been proved that there is an
infinite set of primes in P [31].) Also, we show that Hypothesis 1 implies a certain
immunity property for all dense sets in RP.

In order to make efficient use of Kolmogorov complexity as a tool in proving
these results, we define, for each set L, a function K, (n) which measures the com-
plexity of the simplest strings of length n in L. This definition is built on the notions
of generalized Kolmogorov complexity proposed by Hartmanis [18] and Levin
[26].

The general technique used to prove the results mentioned above consists of two
parts. First, one shows that if secure pseudorandom generators exist, then K (n)
grows slowly for every dense set L in P. Then, one shows that if K (n) grows slowly
for all dense sets in P, then there are fast deterministic simulations of probabilistic
computations.

Once a connection has been established between probabilistic complexity classes
on the one hand, and the rate of growth of K, (n) for dense sets L in P on the other
hand, it is a small step to relate the complexity of sets in NP and NE to the rate of
growth of K () for all sets L in P (not just the dense sets). Thus, for example, we
can show that if there are sets in NE which require doubly exponential time to
recognize determinisitically, then there are sets L in P for which K (n) is large.

These observations raise some interesting questions. For instance, note that every
string in a sparse set in P has a short description (namely, its index in that set).
Thus there is some reason to suspect that K, (n) might grow more slowly for sparse
sets in P than for dense sets. That is, if M is a polynomial-time machine which
“singles out” a few strings of length n, it might seem reasonable to guess that those
strings must be relatively simple.

On the other hand, either this intuition is wrong, or some popular conjectures
are false, since results in this paper show that one of the following three things must
happen:

1. Hypothesis 2 is false.

2 There are fast deterministic simulations for all sets in NE.

3. There is some non-dense set L in P and some ¢ such that Ky (n)>n* 1.0,
but K, (n)<n® for all 6 and all dense L in P (and even for all L in P/poly).

In Section 2, we present some basic definitions and establish notation. In Section
3, we review concepts and definitions related to the theory of pseudorandom
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generators. In Section 4, the notion of generalized Kolmogorov complexity 1S
reviewed. and the function K (n), which measures the Kolmogorov complexity of
the set L, is defined.

In Section 5. results are proved which relate the security of pseudorandom
generators to the Kolmogorov complexity of sets in P and P/poly. In Section 6, we
present results which relate the Kolmogorov complexity of sets in P to a number of
. .open problems in complexity theory. For example, we show that

1. (VLeP,K (n)=0(logn))=E=NE

2. (VLeP, K (n)#w(logn))=DTIME(:(n)) ¢ NP, for any time-construc-
tible superpolynomial ¢

3. (Ve>0,VLeP, K, (n)#w(n))=Ye>0, DTIME(2") & NP.
4. RP ¢ DTIME(2™)=>136, 3L e P/poly, L is a.e. dense and K () = w(n’).

Section 7 contains results relating immunity properties of RP to the existence of
secure pseudorandom generators. Finally, in Section 8 we discuss open problems
and conclusions.

2. DEFINITIONS AND PRELIMINARIES

In this section, we present some basic definitions, and we review concepts related
to pseudorandom generators.

All sets considered in this paper are subsets of {0, 1}*. For all strings x, |x|
denotes the length of x. For a set S, |S| denotes the cardinality of S. For a set
LcX* L=" denotes L n XZ". We make use of the usual correspondence between
{0, 1}* and the positive integers; namely, the string x will denote the integer whose
binary representation is 1x. Thus, for example, we may write |x| =|log x | We will
use a one-one pairing function mapping {0, 1}*x {0, 1}* onto {0,1}*, and for
inputs x and y, we will denote the output of the pairing function by <{x, y).

The census ¢, (n) of a set L is the number of strings in L of lenth n. We say L is
sparse if ¢, (n)=n°". Lis a rally set if L= 0*. An important class of sparse sets are
the P-printable sets. A set L is P-printable if there is a deterministic Turing machine
which, on input a, runs in time polynomial in n and prints out a list of all the
elements of L of length at most n. P-printable sets were defined in [197; a number
of results relating to P-printable sets may be found in [3].

The density d, (n) of L is ¢ (n)/2". We will say that L is dense if for some k, L has
density =n"* i.0. We will also have occasion to refer to sets which satisfy a
stronger density requirement: we say that L is a.e. dense if L is infinite and for some
k and for all large n, L="# @ =d, (n)=n"* Notice that ae. dense sets may
contain no strings of many lengths n, however if L is a.e. dense and contains some
strings of length n, then it contains many strings of length ~.

We shall have occasion to make statements of the form “g=0(f)" or
“g=qw(f)", where g(n) is undefined for some n. The assertion “g= O(f)” will thus
mean there exists some ¢ such that for all large n, g(n) defined = g(n) < cf (n).
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Similarly, “g # w(f)” means that there exists some ¢ and there are infinitely many »n
such that g(n) is defined, and g(n) < ¢f (n).

The reader is expected to be familiar with deterministic, nondeterministic, and
probabilistic Turing machines, and with complexity classes such as RP, BPP, NP,
etc. For background, the reader is directed to [33 or 21].

A function : N >N is said to be time-constructible if there is some Turing
-..machine which, on all inputs of length », runs for exactly #(n) steps.

We let E=DTime(2°"), and NE = NTime(2°"). We will also need to refer to
complexity classes defined in terms of probabilistic machines which run in exponen-
tial time. We let BPTime(T(#))) denote the class of languages L for which there
exists some probabilistic Turing machine M which runs in time T(n) such that
xeL = Prob(M accepts x)>32 and x¢L = Prob(M accepts x)<j Similarly, we
define RTime(T(n)) to be the class of languages L for which there exists some
probabilistic Turing machine M which runs in time T(n) such that xeL=
Prob(M accepts x) >3 and x ¢ L = Prob(M accepts x)=0.

3. PSEUDORANDOM GENERATORS

A pseudorandom generator is an algorithm which runs in polynomial time, takes
a string of length n (the random seed) as input, and produces a string of length n*
(the pseudorandom sequence) as output, where k> 1. In order to be acceptable for
many purposes, the pseudorandom sequences produced by a pseudorandom
generator should satisfy certain statistical properties, and it should be difficult for
any adversary, given the initial segment of a pseudorandom sequence, to predict
which bit will be produced next by the generator. Important papers which have
dealt with pseudorandom generators from a complexity-theoretic point of view
include [35, 39, 17, 11,27, 12, 29].

The following definitions are essentially those of [39]. A T(n) statistical test is a
probabilistic algorithm which runs in time 7{(n). Given any generator g and
statistical test 4, we will be interested in how the behavior of 4 on pseudorandom
strings compares with the behavior of 4 on truly random strings. Suppose g takes
seeds of length »n and produces pseudorandom sequences of length n* Deﬁne
P, +(R) to be the probabxhty that 4 accepts x, where x is a string of length n* (all
strings of length n* being equally likely). Define P, «(PSg) to be the probability
that A accepts g(s), where s is a seed of length n (all seeds of length » being equally
likely). We say that g passes the (7(n), e(n)) test A if [P, «(R)— P, «(PSg)| <e(n)
for all large enough n. That is, g passes the (T(n), e(n)) test 4 if 4 behaves roughly
the same on g’s pseudorandom output as on truly random strings. (Warning: a
possible point of confusion is that n is the length of the seed, i.e., n is the length of
the input to the generator g, rather than the length of the input to the test 4. By
adopting this convention, calculations are simplified, and certain lemmas are easier
to state.)

We say that g is (T(n), e(n)) secure if it passes every (T(n), e(n)) statistical test,
and g is polynomially secure if it is (n*, n~*) secure for every k.
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There are other notions of security which have been studied. For example, in
[11,39] a next bit test was also considered. A generator g fails a (T(n), e(n)) next
bit test 4 if A is a probabilistic algorithm which runs in time T(n) and if there are
infinitely many » such that 4, when given an initial segment of a pseudorandom
string of length n*, can predict the next bit with success rate >3-+ e(n). It was
shown in [39] that a generator g is polynomially secure iff it passes all (n*, n™%)
““hext bit tests. See also [12] for a nice proof of this fact.

Pseudorandom generators are closely linked to one-way functions: i.e., functions
which are easy to compute but are hard to invert. Purported one-way functions
were used in [35,39,11] to construct pseudorandom generators. Levin [27]
showed that the existence of polynomially secure pseudorandom generators 1s 1n
fact equivalent to the existence of a certain type of one-way function; see [12] for
nice proofs of some of Levin’s results.

Boppana and Hirschfeld [12] introduced the notion of an extender, which 1S
closely related to the notion of one-way functions. An extender is a function com-
putable in polynomial time which takes input of length n and produces output of
length n+ 1. Thus an extender is a pseudorandom generator whose pseudorandom
sequences are only one bit longer than the seed. The notion of security for extenders
is defined in exactly the same way as for generators. That is, an extender g is (7(n),
e(n)) secure if it passes every (T(n), e(n)) statistical test, and g is polynomially
secure if it is (n*, n~*) secure for every k. It is shown in [12] that polynomially
secure generators exist iff polynomially secure extenders exist.

The technique whereby a secure extender is transformed into a secure generator
is required in a number of the proofs in this paper. To simplify those proofs, it
is useful to set up some machinery here. What follows is a generalization of a
technique used in [12,39, 11].

DEFINITION. Let x be any string of length n. Define head(x) to be the first bit of
x, and tail(x) to be the suffix of x of length n—1. Let g be an extender. Define
b,zheadogo[tailog]f“(x). For any re N define g,(x) = b (x) bs(x)---b,(x). In
other words, g,(x) is the sequence of r bits which results by computing g(x),
removing the first bit and applying g to the result, and repeating the process r
times.

Given a language L, an extender g, and a number r, we denote by T(L, g, r) the
statistical test which, on input x of length n+ 1, does as follows:

Begin
Probabilistically choose i€ {0, ..., ¥ —1 }
Probabilistically choose ze 2"~ '~
Let y=g,(x), and let b= head (x)
Accept iff zbyeL S -

End

Correction: This should be ¥y = g; (tail(z))
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LEMMA 1. Py o n0+1(R) — Prignar1(PSg) = [dilr) — Prob(g,(y) €
Liye2™)]/r.

rq e n+1 - -
Proof. Let p, denote the probability that T(L, g, r) accepts ye 2" ", given that : Should be

is chosen in step 1, where all y are equally likely. Clearly, Py, »y »+ 1(R)=20p/r.
Similarly, let ¢, denote the probability that T(L, g, r) accepts f(x)e 2" ™ ', given

9(z)

_ that i is chosen in step 1, where all xel” are equally likely. Again, clearly &—

Pr g nne1(PSE) =21

The crucial fact to note is that p,,, =g, for 0<i<r—2, and p,=d.(r)
and qr—l=Pr0b(gr(y)eLly€Zn)' Thus PT(L,g,r),rz+l(R)wPT(L,g,r),n%—l(pSg):
(XiAp:—4q:))/r=(po—q,_1)/r. The result follows. 1

Note that, in the proof of Lemma 1, it was assumed that the number i could be
chosen in the range {0,..r—1} with all i being equally likely to be chosen.
Depending on the model of a probabilistic Turing machine being used, that may or
may not be possible. However, on all reasonable models of probabilistic Turing
machine, it is possible to choose i so that all i are approximately equally likely to be
chosen, so that, on such models of computation, the statement of Lemma 1 is true
modulo some insignificant terms which we find it convenient to ignore. The
interested reader may verify that all theorems and corollaries proved in this paper
remain true without this simplifying assumption.

We remark that, although presented as & probabilistic algorithm, T(L, r, g) can
also be implemented as a circuit, where the size of the circuit is determined by the
complexity of computing g, and by the complexity of determining membership in L.
(The probabilistic aspects can be removed by “hardwiring” in the optimal choices
for i and z. For examples of arguments of this sort, see [12].)

Since secure generators exist iff secure extenders exist iff certain kinds of one-way
functions exist, hypotheses about pseudorandom generators can be expressed using
any of these notions. To simplify the statement of certain results, this paper expresses
all such hypotheses in terms of extenders.

Up to this point, we have considered only statistical tests computable by
probabilistic algorithms. A number of papers dealing with pseudorandom
generators have used a much stronger notion of security (e.g., [11,39,12]). A
strong T(n) statistical test is an algorithm computed by a circuit of size T(n). A
generator is strongly polynomially secure if it passes all strong (n*, n™%) statistical
tests. All of the results mentioned so far are also true in the context of strong
statistical tests. For instance, a generator is secure against next bit tests computed
by poly-size circuits iff it is strongly polynomially secure, and strongly polynomially
secure generators exist iff strongly polynomially secure extenders exist.

However, in some cases, the strong notion of security is necessary in order to
achieve the desired results. For instance, Yao shows in [397] that if strongly
polynomially secure pseudorandom generators exist, then every language in RP has
subexponential time complexity. His proof relies heavily on the strong hypothesis of
security.

Little is known about how secure it is possible for an extender to be. Clearly, if
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P = NP, then no extender is polynomially secure, since if P=NP it would be
possible to recognize the range of the extender in polynomlal time. For essentially
the same reason, no extender computable in time n* is (2"#%, §) secure. When less
than exponential time is allowed; however, the bounds on securlty which we are
able to prove plummet quickly. The following proposition seems to be the best
bound which is known.

PROPOSITION 2. No extender computable in time n* is (2%, 27 LI-antkioend)
secure, for any &> 0.

Proof. Let g be any extender computable in time n*. Consider the 2* test A4
which, on input vy of length n+ 1 probabilistically guesses a set S22 of size
r=2(2"/n*), and computes g(x) for all xe S, accepting if g(x) =y for some x:

11 |
PA.11+](R): Z Py ')n i{S',VEg(S)}1
yeltnT 2 ( )

1 1
= ; S
2n+1 (%)%lg( )I
1 1
g ~n
2n+l (_,)‘L;’
I
:2/1+I
()
PS .
A n+l( g) (2’") 2)1

Thus P, 1(PSg) = Py (R)Z /27 =27 (0 am ko g

Using similar analysis, one can show that no extender g 1is strongly
(2¢7, 2~ =#1) secure. (The circuit can have elements of range(g) encoded directly
in it; this elimates the need to compute g, and thus eliminates the factor of k log n.)
It would be interesting to know if there can be extenders which meet the security
bounds, or if there is any strategy which is significantly better than the naive
strategy outlined above. Results presented later in this paper indicate that, in par-
ticular, it would be interesting to know if it is possible for there to be extenders
which are strongly (2*", 2~*") secure for some ¢ > 0. (Proposition 2 shows that, for
this to happen, it must be that ¢ <1.) If such secure extenders exist, then RP =P
(Corollary 31).

We can now state the four hypotheses about security of pseudorandom
generators which we will use in the rest of the paper:

HyYPOTHESIS 1. There exist extenders computable in polynomial time which are
polynomially secure.
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HypOTHESIS 2. There exist extenders computable in polynomial time which are
strongly polynomially secure.

HyYPOTHESIS 3. There exists an extender computable in polynomial time which is
(2", 27 %") secure, for some &> 0.

... HypoTHESIS 4. There exists an extender computable in polynomial time which is
strongly (2°%, 27" secure, for some &> 0.

We should mention that other notions of pseudorandomness have been con-
sidered in the literature. Ko [22] and Wilber [38] consider infinite pseudorandom
sequences. Longpré [29] compares the notion of infinite pseudorandom sequences
to the notion of pseudorandom generators considered here. Pseudorandom

generators which are secure relative to circuits of restricted depth were considered
in [32,6].

4. TimMe-BouNDED KOLMOGOROV COMPLEXITY

In this section we review concepts related to Kolmogorov complexity and define
a new measure of the time-bounded Kolmogorov complexity of a set.

There have been many attempts to give a rigorous definition for the informal
concept of “randomness.” One approach which has met with some success 18 to
consider a string of length n to be random if it has no description of length less
than n. This is the approach of Kolmogorov complexity (see, €.g., [24, 13]).

Kolmogorov complexity provides a framework for studying the complexity of
finite objects. This theory has proved useful in simplifying counting arguments in
proving lower bounds (e.g., [28]) and has appealing parallels to information theory
[14]. Nonetheless, a shortcoming of Kolmogorov complexity is that it is based on
recursion theory and fails to take time and space complexity into consideration.
That is, a string has small Kolmogorov complexity if it can be constructed (effec-
tively) from only a few bits of information, even if the construction process requires
an enormous amount of resources. A number of researchers have considered
variants of Kolmogorov complexity which deal explicitly with issues of time and
space complexity [1, 20, 22, 30, 36, 37]. We will be most concerned with the
definitions proposed by Hartmanis [18] and Levin [26].

Let M, be a Turing machine. Following [18], define K, [s(n), t(n)] to be
{xe {0, 1}*:3ye {0, 1}* |yl <s(lx]) and M, prints x on input y in <#(|x|) steps}.
That is, K,[s(n), t(n)] is the set of strings which can be “recovered” by M, in time
t(n) from strings of length <s(n). It was shown in [18] that there is a machine M,
(called a universal Turing machine) such that for all v there is a constant ¢ such
that for all s and r K,[s(n), t(n)] < K,[s(n)+c, ct(n) log t(n) +c]. We will let
K [s(n), t(n)] denote K, [s(n), 1(n)]. Many recent papers deal with this notion of
generalized Kolmogorov complexity, including [3,7,23,29].
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A much older notion of time-bounded Kolmogorov complexity was used by
Levin in [25] and was defined more formally in [26]. We restate that definition
here. Let M, be the universal Turing machine considered above. Define Kt(x) to be
min{|p| +log 1: M,, prints x in <7 steps on input p}. Similarly, we define Kt(x|y)
to be min{|p| +1log #: M, prints x in <7 steps on input {p, y)}.

The following proposition, which is implicit in [25], illustrates the nature of the

...measure Kt.

PROPOSITION 3. Let Le NP —DTIME(t(n)), and let Q be a linear-time predicate
such that xeL<>3yQ(x,y). Then there exists an infinite_sequence X, X, .. 0f
strings in L such that Yx ¥y (Q(x;, y)=Kt(y|x)>log /1(]x;])).

Proof. Assume that no such infinite sequence exists. That is, for all large xin L
Ip(Q(x, y) A Kt(y|x)<log./1(|x])). Then on input x a witness for x can be found,

if one exists, by running M ({p, x)) for \/#(|x|) steps, for all strings p of length at
most log «/#(]x|), which can clearly be done in time 7(|x|). 1

The definition due to Hartmanis has the advantage that the time to construct a
string and the size of the description are both specified, so that some finer dis-
tinctions can be made than using Levin’s Kt function. On the other hand, in this
paper we find it convenient to have a function which measures the complexity of a
string; Levin’s definition is much better suited to this task than the definition of
Hartmanis.

The following easy proposition shows that the two notions are closely related.

ProPOSITION 4. Kt(x)<r(|x])=xeK[r(n), 2" ]=Kt(x)<2r(|x]).

Some recent papers (e.g, [3,7]) have considered sets which are subsets of
K[s(n), t(n)] for small s and ¢ Note that this approach tends to equate the
Kolmogorov complexity of a language L with the complexity of the most complex
strings in L. One goal of this paper is to show that there are reasons to be
interested in the complexity of the /east complex strings in L. To that end, we define
the following measure of the complexity of strings in a set L.

DEFINITION. Let L < {0, 1}*. Define K, (n) to be equal to min{Kt(x): xe L™"}
(If L="= ¢, then K (n) is undefined.)

The rest of this paper can be viewed as an investigation into the properties of K,
for sets L in P.

Note that there is a conflict between the notion of pseudorandomness and the
notion of Kolmogorov randomness. If x is a pseudorandom sequence of length n*
produced from a seed of length n, then x is a string of very low generalized
Kolmogorov complexity. Many of the results in this paper are proved by taking
advantage of this conflict.
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5. PSEUDORANDOMNESS AND KOLMOGOROV COMPLEXITY

In this section, we investigate hypotheses about the security of pseudorandom
generators and derive necessary conditions, in terms of generalized Kolmogorov
complexity, for these hypotheses to be true.

- LEMMA 'S. Let r be any time-constructible function, such that r(n) <2". If there is
a set Le DTIME(n*) such that K (r(n))# O(n), then no extender computable in
time n' is (t(n), e(n)) secure, where t(n) = r(n) n' + r(n)* and e(n) < dy(r(n))/r(n).

Proof. Let g be an extender computed in time n’. Assuming the existence of the
set L in the hypothesis of the theorem, we will present a (#(n), e(n)) test which g
fails.

The test is simply this: on input y of length n+1, run T(L, r(n), g), where
T(L, r(n), g) is the test presented in Lemma 1. The time required to run the test is
r(n)+ r(n) n' +r(n)*, and thus this is a 7(n) test.

Note that for all xeZX", Kt(g,,(x))<n+log(r(n)n)+O(1)=n+logr(n)+
O(log n) < 3n for all large n. Since K (r(n)) # O(n), there are infinitely many n such
that g,.,,(Z")nL=J. Le., there are infinitely many n such that Prob(g,(y)e
L|ye2™)=0. By Lemma 1, we have that for any such n,

PT(L, g, r{n)), n+ I(R) - PT(L. g.r(n)), n+ I(Psg) = dL(r(n))/r(n) > e(n)'
Thus g fails the (#(n), e(n)) test. |}

COROLLARY 6. Hypothesis 1=>for all a.e. dense sets L e P, Vk, K (n*) = O(n).

CorOLLARY 7. Hypothesis 3 = for all a.e. dense sets Le P, 3¢ > 0, K{ (27") = O(n).

Proof. To see that Corollary 6 is true, assume that there is a set L in
DTIME(#*) and numbers s and r such that for all large n, L™" # & =d,(n)>1/n’
and K, (n") # O(n). Let g be any extender computable in time n'. 1t suffices to show
that g is not polynomially secure. This is immediate, since it follows directly from
the lemma that g is not (n'n’+n"™, 1/n"™*") secure.

Similarly, to see that Corollary 7 is true, assume that there is a set L in
DTIME(n*) such that for all large n, L="% (J=d,(n)>1/n’, and for all ¢>0,
K. (2°)# O(n). Let g be an extender computable in time n', and let 6 > 0. It suffices
to show that g is not (2°7, 27°") secure. Note that if ¢ is chosen small enough, then
20n s enpl L ke gand 27 < 1/2°* ¢ Now it follows from Lemma 5 that g is not
(2°7 27%") secure. |

Given an ae. dense set L in P, and assuming that secure pseudorandom
generators exist, Corollaries 6 and 7 allow us to conclude that L contains simple
strings of many lengths, but we cannot conclude that it contains simple strings of all
lenths. That is, it would be more satisfying if Corollaries 6 and 7 could be improved
so that one could conclude that K, (n)= 0(n"*) or K (n)= O(log n), respectively,
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but we do not know if such an improvement is possible. Although it is possible to
improve these corollaries somewhat, to slightly expand the class of lengths about
which some conclusions can be drawn, we are still only able to derive conclusions
about a vanishingly small fraction of all lengths. On the other hand, the following
lemma allows us to draw stronger conclusions from Hypotheses 2 and 4.

""" LEMMA 8. Let s be any real-valued monotone increasing function such that
log n < s(n). If there is a set L of a.e. density =1/n which is accepted by a family of
circuits of size n* such that X (n) # O(s(n)), then no extender computable in time n'
is (1(n), e(n)), secure, for any t(n)=(s '(n+1))f+s~ "n+1)n' and e(n)<
(s " n+1))+"

Proof. Assume that s and L are as given in the hypothesis. Let g be computable
in time n’, and let ¢ and e satisfy the given bounds. We must build a (#(n), e(n)) test
which g fails for infinitely many n.

We are given that there are infinitely many r such that K (r)>3s(r). For each
such r, consider n = s(r) ] and consider the behavior of the test T(L, r, g) on inputs
of size n. The test can be computed by a circuit of size r* + rn’. Since s (and hence
s~ ') are monotone nondecreasing, it follows that r <s~'(n + 1), and thus the test is
a t(n) test.

Notice that for any string v of length n, Kt(g,(y)) < (n+2logr)+log(rn*)+
O(1)<3n for all large n. Thus for all of these n, Prob(g,(y)eL|yel”)=0,
and thus by Lemma 1, Py, . 0 1(R) = Pr g e (PSR)=di(r)/r=1/r'%1 >
1/(s~ Y (n+1))*" !> e(n). Thus g fails the (7(n), e(n)) test. |

CoRrOLLARY 9. Hypothesis 2=Ve>0, K (n)= O(n°) for all a.e. dense sets L in
P/poly.

CorOLLARY 10. Hypothesis 4 =K, (n)=O(logn) for all ae. dense sets L in
P/poly.

Note that Corollary 6 tells us that, if Hypothesis 1 is true and L is an a.e. dense

set in P, then K, (n)# w(n®) for any ¢> 0. The following lemma allows us to drop
the “a.e.” condition on L.

LEMMA 11. Let r be time-constructible and monotone increasing, r(n) <2", and let
s be a monotone-increasing real-valued function such that s(r(n))=n for all ne N. If
there is a set L € DTIME(#n*) such that K (n)= w(s(n)) and d (n) = n i.0., then no
extender computable in time n' is (1(n), e(n)) secure, for any t(n)zr(n+1) n' +
r(n+ 1), and e(n) < 1/r(n+1)“*~

Proof. Assume that L satisfies the conditions given above, and let g be an exten-
der computable in time n’. Let 4 be the statistical test which, on input x of length
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n+ 1, probabilistically chooses be {r(n), .., r(n+1)}, and then runs T(L, b, g), A
runs in time #(n). Clearly,

PA.n+](R)_PA,)1+1(PSg) ‘

1

zr(n+ 1)_r(n)%PT(L,g,b).)I+I(R)—PT(L,g‘b).n'*)“I(Psg)

1 ZdL(b)—Prob(g,,(y)eLlye.Z’”)
> )

“rn+1)4

By assumption, for all large b, K (b) > 3s(b) = 3(s(r(n))) = 3n. Note also that for
any y of length n, Kt(g,(y)) <n+log(bn')+ O(1)<n+logr(n+ 1)+ O(log n) < 3n
for all large n. That is, for all large b, Prob(g,(y)eL|yeX")=0. Thus, by
Lemma 1, for all large n,

1 dy(b)_ |1

) b /r(n+1)2>,;dL(b)'

P R)y—-P PSg) >
A,n+1() A,n+1( g) r(n+1)b

Since dy(b)=1/b*21/(r(n+1))* i.0, we have that P, ,, (R) —P, ...(PSg)=
1/(r(n+1))*? for infinitely many n. |

CoroLLARY 12. Hypothesis 1 =Ve> 0, K, (n) # w(n®) for all dense sets L in P.
CoroLLARY 13. Hypothesis 3 =K (n) # w(log n) for all dense sets L in P.

CoroLLARY 14. Hypothesis 3 = every dense set in P has an infinite P-printable
subset.

Proof. It was shown in [3] that a set L is P-printable iff L is in P and for some
k, L= K[k logn, n*]. Equivalently, L is P-printable iff L is in P and for some &,
Kt(x)<klogn for all xeL.

Now assume Hypothesis 3, and let L be a dense set in P. By Corollary 13, there
is some k such that for infinitely many xe L, Kt(x) <k logn. Let 4 be the set of all
strings y such that Kt(y) <k log n. It is easy to check that A is in P, and thus L n A
is an infinite P-printable subset of L. |

6. THE POWER OF PROBABILISTIC AND NONDETERMINISTIC COMPUTATION

In the previous section, hypotheses about the security of pseudorandom
generators were shown to have consequences about the rate of growth of functions
of the sort K, (n), where L is a sufficiently dense set in P. In this section, we show
that the rate of growth of K () is also closely related to various open questions
about the relationships among deterministic, probabilistic, and nondeterministic
complexity classes.
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Hartmanis has raised the question of what can be said about the complexity of
K[n/2, n*]. It seems unlikely that K[n/2, n*] is in P, although there is little hope of
proving that directly, since K[n/2, n*] is in NP. Given that there is some vague
intuition that K[n/2,n’] is not in P, it is tempting to suggest that behind that
intuition, there is a feeling that polynomial-time machines cannot distinguish

complex strings from easy ones. The belief in the existence of secure pseudorandom

“humber generators is a manifestation of that feeling. The results in this section con-
stitute an examination of the consequences of the hypothesis that, given a machine
M which runs in polynomial time, if M accepts infinitely many complex strings,
then M must also accept infinitely many noncomplex strings.

First we must introduce the notions of a.e. complexity and bi-immunity.
Following [15], we say that a set L is a.e. t-complex if every algorithm accepting L
requires more than time 7(|x]) for all large inputs x. It can be shown [15,34] thatif
T is a time-constructible function, and t(n) log 1(n) = o(T(n)), then there is a set L
in DTIME(T(n)) which 1s a.e. t-complex.

A set L is said to be immune with respect to a class C of sets if L is infinite and
has no infinite subset in C. L is bi-immune with respect to C if both L and its
complement are immune with respect to C. As was pointed out in [15], the notions
of bi-immunity and a.e. complexity are closely related. Specifically, if L is ae.
t-complex, then L is bi-immune with respect to DTIME(#(n)). Furthermore, if 7 18
time-constructible and L is bi-immune with respect to DTIME(t(n)), then L is a.e.
t-complex. (On the other hand, it can be shown that there are non-time-
constructible functions ¢ and sets L which are bi-immune with respect to
DTIME(¢(n)), but are not a.c,, t-complex.)

Combining the facts from the previous two paragraphs, we observe that if Tisa
time-constructible function and t(n) log t(n)=o0(T(n)), then there is a set L 1n
DTIME(T(n)) which is bi-immune with respect to DTIME(1(n)). The results below
make use of this fact.

THEOREM 15. If there is a set A€ NTIME(#* ') which is immune with respect to
DTIME((25°") for all b, then JL e DTIME(O(n)) such that Ky (n)= w(s(n)).

Proof. Assume that every set L in DTIME(O(#n)) has K (n)# o(s(n)). 1t will
suffice to show that for every A e NTIME(n" ~ 1y there is some b such that A has an
infinite subset in DTIME(27¢")).

Let A be accepted by a nondeterministic machine M running in time n*~1 Let
L={{xyy IKxy)l —»* and |x| =n and y encodes an accepting computation of
M on x} e DTIME(O(n)). By assumption, there is some ¢ such that K (n)<cs(n)
for infinitely many n. Let b>2c. It is easy to verify that the following routine
accepts an infinite subset of L in time 27"

Begin

On input x of length 7,
For all = of length < cs(n*), run M, (z) for 2657 steps.
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If for some z3y, M, (z) prints out {x, y)> € L, accept.
Else, reject.

End |

COROLLARY 16. 3¢ DTIME(2™)< NP = 35 3L e DTIME(O(n)), K, (1) = o (n?).

~ v Proof. There is an infinite A e DTIME(2™) which has no infinite subset in

DTIME(2") for any y <e. If A is in NP, then it is in NTIME(#*~"') for some k.
Choosing 6 < ¢/k satisfies the conditions of Theorem 15. |

CoroLLARY 17. Let T(n) be any time-constructible function such that
Vk, T(n) = w(n*). DTIME(T(n)) < NP = 3L e DTIME(O(n)), K, (n) = w(log n).
(Equivalently, if every infinite set in P has an infinite P-printable subset, then NP
does not contain any deterministic time class larger than P.)

Proof. There is an infinite A e DTIME(T7(n)) with has no infinite subset in P.
The corollary now follows directly from Theorem 15. |

THEOREM 18. If there is a dense set A€ RTIME(n*~1") which is immune with
respect to DTIME(2”""”k)) for all b, then there is a dense L € DTIME(O(n)) such that
K (n) = w(s(n)).

Proof. The proof of this result is really the same as the proof of Theorem 15. It
suffices to note that the set L= {<{x, y>: |{x, y>| =n* and |x| =#n and y encodes an
accepting computation of M on x}eDTIME(O(n)) has density d,(n*)>
dq(n)/2. 1

CorOLLARY 19. 3¢, DTIME(2™)< RP =36, 3L e DTIME(O(n)), L is dense and
K, (n)=w(n®).

Proof. This is essentially the same as the proof of Corollary 16. It need only be
noted that since there is a set Ae DTIME(2”) which is bi-immune with respect to
DTIME(2") for all y <e, it must be the case that either A or its complement is
dense. |

CorOLLARY 20. Let T(n) be any time-constructible function such that
Yk, T(n) = w(n*). DTIME(T(n)) < RP =3 L e DTIME(O(n)) such that L is dense
and K (n) = w(log n). (Equivalently, if every dense set in P has an infinite P-printable
subset, then RP does not contain any deterministic time class larger than P.)

The preceding four corollaries have the form K (n) # w(s(n))=>DTIME(t(n) &
NP (or RP), for various functions s and 7 and conditions on L. In an earlier version
of this paper [4], it was remarked that even stronger conclusions could be seen to
follow; namely under the given hypotheses, one can conclude that DTIME(t(n)) &
NP uUcoNP, since it can be shown that DTIME(:/(n)) € NP UcoNP =
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DTIME(1(rn)) € NP. In the meantime, it has been shown that a slightly stronger
result  holds; namely DTIME(«(n)) g’{_”NPzDTIME(t(n))QNP [5]
Somewhat surprisingly, no further strengthening along these lines can be
expected, since there is an oracle relative to which DTIME(«(n)) <4_, NP and
DTIME(z(n)) &€ NP [5].

The following results relate the K complexity of dense sets in P/poly to the

" ~deterministic complexity of sets in RP. Note, in this regard, that there is nothing

interesting to be said about the K complexity of non-dense sets in P/poly, since a
set in P/poly can consist of an infinite sequence of Kolmogorov-random strings.

THEOREM 21. [If RTIME(#*) & DTIME(t(n)), then there is an a.e. dense set
L e P/poly such that K (n) defined =K (1n)> log \/t(n'").

Proof. Let Ae RTIME(#*)-DTIME(7(n)), and let O be a linear-time predicate
such that xe A <=3y, [y =|x|* A O(x, ), and furthermore x e A4 = at least half of
the strings 1 of length |x|© satisfy Q(x, ). By Proposition 3, there is an infinite
sequence X, X,... of strings in A such that Vx,, ¥y, (Q(x,, »)=Kt(y) = Kt(y|x)>
log </t(]x;])). Asssume without loss of generality that no two strings in the
sequence are of the same length. Let L={y:di[yl= Ix;15 A Q(x;, ¥)}. L is easily
seen to be a.c. dense, and L is in P/poly, since it can casily be recognized using a
family of circuits which has the sequence of Xx/'s hardwired in. _Also,
note that L="# @ =m=n" for some k and K (m)=K_(n*)>log \/t(n):
log /t(m'%). §

COROLLARY 22. RP ¢ DTIME(2")=-36,3L¢€ P/poly, L is ae. dense and
K, (n)=w(n’) (and thus K, (1) # o(n®)).

Proof. Let A e RTIME(#*)-DTIME(2"). By Theorem 21 there is an a.e. dense
set L e P/poly such that K (n)> (n°*)/2 everywhere that K (n) is defined. Choos-
ing 0 < ¢/k satisfies the claim. E

COROLLARY 2.3. RP#P=3LeP/poly. L is ae dense and K (n)=w(logn)
(and thus K (n)# O(log n)).

Proof. Let A e RTIME(#*)— P, and Q be the linear-time predicate associated
with A, as in the proofs of Proposition 3 and Theorem 21. Since A ¢ DTIME(n')
for all /, it follows that there is an infinite sequence X, X,, ... of strings in A such
that V. ¥y, (O(x,,y)=Kt(y|x)> (//2k)logn). Letting L= {yi3lyl= Ix,15 A
O(x,,y)}, it is easy to verify that L is a dense set in P/poly, and for all constants ¢
and all large enough n, K (1) defined = K, (n)>clogn. 1

Whereas the results so far in this section have dealt with conditions of the form
K, (n)= w(r(n)), the results which follow consider the condition K, (n)=0O(r(n)).

THEOREM 24. Let r(2") be a time-constructible function. If, for all LeP,
K, (n)= 0(r(n), then NE € DTIME(z"”"‘"‘)).
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Proof. Let A eNE be accepted by a NE machine M which runs in time 2¢", and
let Le P be the set { y:|y|=m and y encodes an accepting computation of M on
input m}. (Recall that we make no distinction between a number and the string
which encodes it.) By assumption, there exists some k such that, for all large m,
K (m)<kr(m®) if L="™ # @f. Thus the following deterministic algorithm runs in
time 22 and decides membership in A; on input m of length n, search through
~the-set-of all strings y such that Kt(y)<kr(m®). If some string ye L such that
| ¥| =m* 1s found, halt and accept; else halt and reject. |

CoroLLARY 25. If E#NE, then there is some Le P such that K, (n) # O(log n).

COROLLARY 26. If NE & (,.,DTIME(2%"), then there is some L € P and some
&> 0 such that K (n)# O(n").

Some discussion is called for, comparing these results to the results in the
previous section, particularly Corollaries 9 and 10. Since it is often conjectured that
nondeterministic computations cannot be simulated deterministically significantly
faster than by the naive search strategy, it follows by Theorem 24 that it is often
conjectured that there is no function r(n)=o(n) such that for all Le P, K, (n)=
O(r(n)). On the other hand, if secure pseudorandom generators exist, then
Corollaries 9 and 19 say that sufficiently dense sets L in P (or even P/poly) must
have K (#n) be quite small for many n.

The preceding results allow us to draw certain conclusions from assumptions
about the growth of functions of the form K, (n) for sets L in P. Unfortunately,
however, some of the results in Section 5 give information only about functions of
the form K (n*) or K, (2°"). The next few results deal with functions of the sort.

THEOREM 27. If NTIME(2°"") £ N, DTIME(szz) then there is some
L e DTIME(O(n)) and some ke N such that K (n*)# O(n).

Proof. Let Ae NTIME(2¢")— DTIME(2%"), and let M be a nondeterministic
Turing machine accepting A in the given time bound. Let L = { y: 3x, x“ 8~ < | y| <
(x+ 1)U°ex+1 and some prefix of y encodes an accepting computation of M on X}
Clearly, L e DTIME(O(n)). Note that for all xe A, there is a string encoding an
accepting computation of M on x in L, since x¢'°2* < 2", We must show that for
some sufficiently large value of k, K, (n*) # O(n).

Assume that K (n*)<bn for all large values of n at which K, (n*) is defined.
Then consider the following routine for accepting A:

Begin

On input x of length n,
let m be the least such that x“'°8* < m* < (x 4 1)<logx+1)
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Search through all strings y such that K (y)<bm.

If some string y € L of length wi* is found, halt and accept, else reject.
End

. - . . . - clog x+ 1Z1/k . .

The time required to run this routine is 226™ < 2200+ D= DT which s less than
Livl 12 . : :

P 92" ascuming k was chosen sufficiently large. |

We remark that the time bound 2007 was chosen only in order to simplify the
exposition. Similar results can be proved for NTIME(2°5¢") for any sufficiently
“nice” superlinear function s(n).

COROLLARY 28. IfRTIME(2O‘"2)) ¢ Neso DTIME(ZZME) then there is some a.e.
dense set Le DTIME(O(n)) and some keN such that K{(n*)# O(n).

THEOREM 29. If NTIME(2O‘2"’)#DTIME(ZO(Z"’), then there is a set L in
DTIME(O(n)) such that for all >0, K, (27) # O(n).

Proof. The proof of this result is quite similar to the proof of Theorem 27. Let
A e NTIME(2?') — DTIME(2°?”), and let M be a mnondeterministic Turing
machine accepting A in the given time bound. Let L= {y: Ix2< |y < 2¢x+ 1 and

some prefix of » encodes an accepting computation of M on x}. Clearly,
L e DTIME(O(n)). We must show that for all £>0, K (2°")# O(n).

Assume that K, (2") < bn for all large values of n at which K, (2*) is defined.
Then consider the following routine for accepting A:

Begin
On input x of length 7,
let m be the least such that 2" < 2% < 2etx+ 1)
Search through all strings y such that K (v) < bm.
If some string y € L of length 2" is found, halt and accept, €lse reject.

End

The time required to run this routine is 92bm < 2blelx+ 1/e) = 2000

"COROLLARY 30. If RTIME(29%") # DTIME(292"), then there is an a.e. dense set
L in DTIME(O(n)) such that for all ¢>0, K, (2)#O(n).

At this point, we are finally in a position to relate assumptions about the
existence of secure pseudorandom generators to consequences concerning
probabilistic complexity classes.

CorOLLARY 31. 1. Hypothesis 1 — BPTIME(2°"") < =0 DTIME(2"),
2. Hypothesis 2=BPP <= ().-0 DTIME(2").
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3. Hypothesis 3= RTIME(29?")=DTIME((2°%").
4. Hypothesis 4 = RP=P.

Proof. Part 4 follows from Corollaries 10 and 23. Part 3 follows from
Corollaries 7 and 30. Part 2 is from [12]. It follows from Corollaries 6 and 28 that
Hypothesis 1=>RTIME(2°"")<),., DTIME(2*"), but the stronger claim of
""part 1 remains to be proved.

By standard translational methods, it suffices to show that if Hy pothesis 1 is true,
then for all &> 0, every tally set in BPTIME(n?"°#") is in DTIME(2""").

Let ¢ >0, and choose k so that 1/k <e. Let g be any secure generator which takes
inputs of length » and produces outputs of length #*. Let L be a tally set accepted
by some BPTIME(bc'°¢") machine M. The following deterministic algorithm
determines membership in L:

Begin
On input 0~
find m such that n“'°8" < m"* < (n+ 1) 'oe"+ 1),
for all strings x length m
compute g(x)
record if g(x) is a computation causing M to accept 0"
If at least half of the strings g(x) cause M to accept, halt and accept.
Else, halt and reject.

End

The running time of this algorithm is 27O 20+ D DV H2R If the
algorithm is not correct, assume without loss of generality that it rejects infinitely
many strings in L. That is, it must be the case that there are infinitely many strings
0" such that a random sequence of coin flips of length n“'°¢” causes M to accept,
but fewer than half of the pseudorandom strings of that length cause M to accept.
That is, g fails the following probabilistic polynomial-time statistical test A4:

Begin

On input y such that |y| =m"* for some m,
let n be the greatest integer such that n'°¢8” < m”*.

Accept iff y is an accepting computation of M on 0"
End

By the comments above, for infinitely many m, P, ,«(R)>32and P, .«(PSg)<3.
Thus g is not polynomially secure, contrary to our choice of g. |}
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7. IMMUNITY PROPERTIES OF RP

In this section we show that, under the assumption that secure pseudorandom
generators exist, sufficiently dense sets in RP satisfy certain immunity properties.

. ..COROLLARY 32. Hypothesis 3 = cuvery dense set in RP has an infinite P-printable
subset.

Proof. 1f A is a dense set in RTIME(n*), then the set L= ({x,y>:y 18 a
sequence of coin flips of length n* witnessing that x & A, and |v|=|x|"} is a dense
set in DTIME(O(n)). By Corollary 14, Hypothesis 3 implies that L has an infinite
P-printable subset, S. Clearly, the set {1: <X, yyeS) is an infinite P-printable
subset of A. §

Thus. for example, Hypothesis 3 implies that there is an infinite P-printable set of
primes.

Hypothesis 3 is, of course, a very strong assumption. [t turns out that a
somewhat similar immunity property holds for RP, using the more commonly
accepted Hypothesis 2.

TuroreM 33. Hypothesis 2=if L is a dense set in RP. then L x L has an infinite
subset in P.

Proof. Assume Hypothesis 2 holds, and let L be a set in RP such that for some
c<1,d (n)>2"io. (Note that we are assuming much less than density here; the
claim holds even for sets of such “moderate” density.)

As Yao has pointed out [39], if Hypothesis 2 holds. then for all & there is a
probabilistic polynomial-time machine M, accepting L which, on input xeL of
length n, flips only n'* coins and accepts with probability > . (This machine M
flips n'* coins, and then applies a secure pseudorandom generator, and then uses
the pseudorandom sequence to continue the computation.) In the same way, given
any 0 < 1, one can construct a probabilistic polynomial-time machine M ; accepting
L which, on input xeL of length n, flips n coins and accepts with probability
~ 12" (This is accomplished by choosing k large enough, and simulating M,
on n'~ % independent trials.)

Let e<d <1, let Q(x, ) be the predicate which is true if v is a sequence of coin
flips causing M, to accept X, and let S={{x > x[=1ylA O(x,v) ~n Oy, x)h
Clearly, Sisin P and S is a subset of L x L. It suffices to show that S is infinite; we
show that for all n such that dy(n)> 2~ there are strings x and y of length »n such
that {x,yy€eS.

Consider the square matrix with one row and one column for each element of L
of length n, where position (¥, y > is filled with a 1 or a 0 according to whether or
not Q(x, v) is true. Since M, accepts each xin L with probability >1— 2" there
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are at most (27"") 2” strings y of length » such that Q(x, y) is false, and thus each
row in the matrix has at least

n - 1 2}7
d (n) 2" — = >d (n)2"—=

1
L >—d, (n)2"

22772

"“1°§'in it."That is, more than half of the entries in the matrix are filled with 1’s. Thus

there must be at least one pair (x, y» such that positions {x, y> and {y, x) are
both filled with 1’s. (In fact, there must be many such pairs) Thus {x, y>eS. |}

Note that, for all sets L, L x L has an infinite P-printable subset iff L does. Also,
L x L has an infinite r.e. or recursive subset iff L does. Furthermore, it is easy to
show that, if P= NP, then L xL has an infinite subset of P iff L does. However,
there are oracles relative to which there are sets L such that L has no infinite subset
in P, but LxL does. (Sketch of proof. Let A be an oracle consisting of one
Kolmogorov-random string for each of a very sparse set of lengths, so that (xe€ 4,
yed, and x<y)=2"<|y|. Let L be the set {w:3v|w|=|v] and wved or
vwe A}. Clearly, L x L has an infinite subset in P*. However, if S is a subset of L in
P#, accepted by a polynomial-time oracle Turing machine M, then there is a Turing
machine which, given n, the elements of A of length <log 2n, and a description of
M, along with at most a constant number of extra bits of information, will print
any given string in S. Thus if S is infinite, it contains strings of low Kolmogorov
complexity, and thus is not a subset of L.) Thus, knowing something about the
immunity properties of sets of the form L x L in RP seems to tell us little about the
immunity properties of arbitrary sets in RP.

If it could be shown that Hypothesis 2 = that every dense set in RP has an
infinite subset in P, it would follow that Hypothesis 2 implies DTIME(z(n)) € RP,
for any time-constructible superpolynomial function #(r), since for any such 1(n)
there 1s a set in DTIME(#(n)) which is bi-immune with respect to P.

Although the existence of sets L such that L x L is P-immune can be shown using
standard diagonalization techniques, these techniques seem to require slightly more
than exponential time. That is, it does not seem to be currently known whether or
not there are sets L in DTIME(2") such that L x L is P-immune, although such sets
can be shown to exist in DTIME(29™).

8. CONCLUSIONS

A new measure of the complexity of a language L has been introduced in this
paper. For any set L, K, is a function which measures, for each n, the time-
bounded Kolmogorov complexity of the simplest strings in L of length n. We have
shown that if secure pseudorandom generators exist, then K, grows slowly for all
dense sets L in P or P/poly, and if hard sets exist in NE, then K, grows quickly for
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some sets L in P. If RP # P, then K grows quickly for some dense sets L in P/poly.
Using the functions K as a tool, we have shown that different hypotheses about

the existence of secure pseudorandom generators imply the existence of fast deter-

ministic simulations of probabilistic algorithms, although the nature of the sort of

speedup which can be proved varies according to the sort of security which is

assumed.

“"'In particular, we were able to show:

I. Hypothesis 1 =BPTIMEQ2?"")< N:>0 DTIME(22").
2. Hypothesis 2=BPP & Neso0 DTIME((2").

3. Hypothesis 3= RTIME(2°%") = DTIMEQ2%™").

4. Hypothesis 4=RP =P. '

This paper considered some extremely strong hypotheses about the security of
pseudorandom generators. In particular, Hypothesis 4 1s so strong that it might be
possible to prove that it is false. One possible approach to this problem is outlined
here: For any k and x, let Ex(x)= {y:Kt(x]y)<klogn }; intuitively, E,(x) is the
set of strings y relative to which x is easy. There seems to be some relationship
between the Kt complexity of x and the size of E (x)n X1 since it 1s easy to see
that 2" < E,(0") for large enough k, whereas for most strings x of length n (and
hence for all “random” strings) there are fewer than n* strings of length n in E,(x).
If there exists an infinite sequence of strings x such that Kt(x) grows faster than
log x, but E (x) 18 somewhat large, then Hypotheses 4 is false. More formally:

ThEOREM 34. If 3k, VI, 3x, Kt(x)>Ilogn and |E(x)nZM|> 21¥1/|x|%,  then
Hypothesis 4 is false.

Proof. Assume the hypothesis of the lemma is true, and for I=1,2,..let x, be
the string whose existence is guaranteed for each I Assume without loss of
generality that i <j= |x,| <|x;|. Note that the set L= {y: 3x, |x| =yl A yeE(x)}
is in P/poly. By assumption, it is dense. Also, it is clear that L has no infinite
P-printable subset, since if S is a P-printable set, then there is some [ such that, for
all xeS, Kt(x)</log|x|. By Corollary 10, Hypothesis 4 is false. 1§
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