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P-PRINTABLE SETS*

ERIC W. ALLENDERY AND ROY S. RUBINSTEIN%

Abstract. P-printable sets arise naturally in the studies of generalized Kolmogorov complexity and data
compression, as well as in other areas. We present new characterizations of the P-printable sets and present
necessary and sufficient conditions for the existence of sparse sets in P that are not P-printable. As a corollary
to one of our results, we show that the class of sets of small generalized Kolmogorov complexity is exactly
the class of sets which are P-isomorphic to a tally language.
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1. Introduction. Sparse sets have the useful property that for every n there is a
table of size polynomial in »n that lists the elements of the set of size less than or equal
to n. Letting S be an arbitrary sparse set, it is conceivable that by storing a polynomial
size table for sufficiently large n, we might have immediate access to all the information
about § that we might ever need, despite the fact that the uniform complexity of §
may be very high. Unfortunately, the complexity of producing such a table may be
much greater than the complexity of recognizing the set S. If the complexity of producing
a table for S is not much greater than the complexity of recognizing S, i.e., the
complexity of producing a table for S is polynomial-time Turing reducible to S, then
S is said to be self P-printable. If the complexity of producing a table for § is easy,
i.e., a table for § can be produced in polynomial time without using S as an oracle,
then S is P-printable. (Formal definitions for this and other concepts are given in § 2.)
Obviously, P-printable sets belong to P. The notion of P-printability was introduced
in [HY84] and was further explored in [HIS85].

The idea of generalized Kolmogorov complexity was introduced in [Har83] and
[Sip83], and the connection between it and P-printability has been studied indepen-
dently in [BB86], [HH86], and [Rub86b]. Generalized Kolmogorov complexity is a
measure of how far a string can be compressed and how fast it can be restored. The
relativized version of generalized Kolmogorov complexity allows the use of an oracle
in the restoration. Sets containing only strings that can be greatly compressed and
quickly restored (to be defined more precisely in the next section) are said to have
small generalized Kolmogorov complexity. The papers [BB86] and [HH86] show that a
set is self-P-printable if and only if it has small generalized Kolmogorov complexity
relative to itself. This has the corollary (independently proved in [Rub86b]) that a set
is P-printable if and only if it is in P and has small generalized Kolmogorov complexity.

P-printable sets are also shown here to have close connections with tally sets.
Section 3 presents the result that a set is P-printable if and only if it is P-isomorphic
to a tally language in P, if and only if it is in P and has small generalized Kolmogorov
complexity. This has the important corollary that sets of small generalized Kolmogorov
complexity are precisely those that are P-isomorphic to a tally language. This improves
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upon a result in [BB86] that the sets of small generalized Kolmogorov complexity are
those that are ‘“‘semi-isomorphic” to a tally language. Since most of the properties of
sets studied in complexity theory are invariant under P-isomorphisms, the significance
of this corollary is that the sets of small generalized Kolmogorov complexity are
essentially identical to the tally languages from the point of view of complexity theory.

It is also shown that a set is P-printable if and only if it is sparse and has a ranking
function computable in polynomial time. A ranking function is a function that maps
an element of a set to its index in the lexicographic ordering of the set. They are
presented in the context of data compression in [GS85] and are of independent interest
[AIll85] and [Hem87].

Section 4 presents machine-based characterizations of the P-printable sets. It is
shown there that a set is P-printable if and only if it is sparse and accepted by a
deterministic one-way logspace-bounded AuxPDA, if and only if it is sparse and
accepted by a nondeterministic one-way logspace-bounded AuxPDA. This presents a
parallel to the result of Cook [Coo71] that a set is in P if and only if it is accepted by
a (two-way) logspace-bounded AuxPDA. It is surprising that restricting AuxPDAs to
have a one-way input head leads to a characterization of P-printable sets.

One-way AuxPDAs are not very powerful machines, as it was shown in [Bra77b]
that some relatively “natural” languages in P are not accepted by one-way AuxPDAs
of sublinear space complexity. With this result, any argument showing the existence
of a sparse set in P (or even PSPACE) that is not accepted by any one-way logspace-
bounded AuxPDA is strong enough to settle several outstanding problems in complexity
theory, since, for example, P=PSPACE implies all sparse sets in PSPACE are P-
printable [HY84].

Section 5 addresses some structural questions concerning P-printable sets. While
it is clear that every P-printable set is sparse and in P, it is not known whether or not
there is a sparse set in P that is not P-printable. Here we present the result that there
is a sparse set in P that is not P-printable if and only if there is a sparse set in DLOG
that is not P-printable, if and only if there is a sparse set in FewP—P. FewP was
introduced in [All86b] as a class of sets between UP and NP (see § 2 for more details).
This section concludes with the results that there are infinite sparse sets of time
complexity arbitrarily close to polynomial that have finite intersection with every
P-printable set, and that every infinite set in P has an infinite P-printable subset if and
only if every infinite set in NP has an infinite P-printable subset.

2. Preliminaries. While it is assumed that the reader is familiar with the basic
concepts and structures from complexity theory (such as P, NP, and DLOG), some
of the more important and not universally known ones are presented here, along with
notation.

We use the standard lexicographic ordering = on strings, and |w| denotes the
length of the string w. All strings here are elements of {0, 1}*, and all sets are subsets
of {0, 1}*. Although a language may be referred to as a subset of {0, 1, #}*, this is
merely a notational convenience; such a language should be thought of as a subset of
{00, 11, 01}*. A tally language is a subset of {0}*.

Strings are sometimes used to denote numbers (and vice versa) by letting the
string w denote the number whose binary representation is 1w. This preserves the
ordering and allows us to write, for example, |w|=|log w]. All logarithms are base
two. We use EXPTIME to denote DTIME(2°") and NEXPTIME to denote
NTIME(2°™").

DEFINITION 1. A set A is sparse if there exists a polynomial p such that the
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number of strings in A of length less than or equal to n is less than or equal to p(n).

The Kolmogorov complexity of finite strings was introduced independently by
Kolmogorov [Kol65] and Chaitin [Cha66], [Cha75] as a way to measure the random-
ness of a finite string (or equivalently, the amount of information contained in a string).
The Kolmogorov complexity of a finite binary string is the length of the shortest
program that generates it. Intuitively it can be seen that if a string can be generated
by a program shorter than itself (i.e., it can be compressed), it must contain some
redundant information. A string is random if it cannot be compressed.

One limitation in using this as the definition of randomness is that it provides no
limits or restrictions on the computation time to generate the original string from its
smallest program. Time-bounded versions of Kolmogorov complexity have been con-
sidered by Ko [Ko86], Sipser [Sip83], and more recently by Hartmanis [Har83].

Hartmanis introduced a two-parameter version of Kolmogorov complexity (now
called generalized Kolmogorov complexity) that includes information about not only
how far a string can be compressed, but how fast it can be restored. This generalized
Kolmogorov complexity is further explored in [AllI87], [BB86], [Huy86], [KOSW36],
[Lon86], [Rub86b], and [Rub86a]. It is Hartmanis’s definition of generalized
Kolmogorov complexity that is presented here.

DerFINITION 2. For a Turing machine M, and functions g and G mapping natural
numbers to natural numbers, let

K.[g(n), G(m]={x|@y)[y|=g(x]) and M,(»)=x in G(x]) or fewer steps]}.

We will refer to y as the compressed string, x as the restored string, g(n) as the
compression, and G(n) as the restoration time. It was shown in [ Har83] that there exists
a Turing machine M, (called a universal Turing machine) such that for any other
Turing machine M, there exists a constant ¢ such that K, [g(n), G(n)]c
K.[g(n)+c, cG(n)log G(n)+ c]. Dropping the subscript, K [g(n), G(n)] will actually
denote K, [g(n), G(n)].

DEFINITION 3. A set is said to have small generalized Kolmogorov complexity if
it is a subset of K[k log n, n*] for some k.

Clearly every set with small generalized Kolmogorov complexity is sparse. Note
that the definition of small generalized Kolmogorov complexity is robust enough to
handle the small difference between the universal machine mentioned above and any
other machine.

We now give the definition of P-printability.

DEeFINITION 4. A set S is polynomial-time printable (P-printable) if there exists a
k such that all the elements of S up to size n can be printed by a deterministic machine
in time n* + k.

Clearly every P-printable set is necessarily sparse and in P.

Goldberg and Sipser [GS85] discuss compression of languages and ranking and
present the following definitions.

DeFINITION 5. A function f:3*-32* is a compression of language L if f is
one-to-one on L and for all except finitely many x e L, | f(x)|<|x].

DerINITION 6. A language L is compressible in time T if there is a compression
function f for L that can be computed in time T, and the “inverse” of ' f(L)y= L,
such that for any x€ L, f'(f(x)) = x, can be computed in time T.

This clearly relates to generalized Kolmogorov complexity in that compressible
languages do not contain more than finitely many random strings, and the compression
time (in this sense) relates to the second parameter of the generalized Kolmogorov
complexity. Note that in this version, the compression time is a bound on both the
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compression and restoration, whereas the time parameter of generalized Kolmogorov
complexity refers only to the restoration time.

Reference [GS85] additionally presents the following definitions.

DerINITION 7. A function f optimally compresses a language L if for any xe L of
length n, |f(x)|=[log (¥|_,|L'])], where L' is the set of strings in L of length i.

DerINITION 8. For any set L < X*, the ranking function for L, r : X% - N, is given
by ri(x)=[{we L|w=x}|.

The ranking is a special kind of optimal compression.

Allender [AlI86b] defined the complexity class FewP to be between UP and NP
as follows.

DeriNiTION 9. FewP is the class of languages that are accepted by nondeterminis-
tic polynomial-time Turing machines M for which there is a polynomial p such that
for all inputs w, if M accepts w, there are fewer than p(|w|) accepting computations
of M on w.

FewP is related to the class UP [Ber77], [Val76], [GS84] of languages in NP that
are accepted by nondeterministic polynomial-time bounded Turing machines with
unique accepting computations. Both UP and FewP are subclasses of NP defined by
restricting the number of accepting computations. Densities of accepting computations
were previously considered in [Mor82], but no class equivalent to FewP was introduced.

DeriniTION 10. A function f is a P-isomorphism if it is a bijection such that both
f and 7' are computable in polynomial time. Two sets A and B are P-isomorphic if
there is some P-isomorphism f such that A= f(B).

Auxiliary pushdown automata (AuxPDAs) are due to Cook [Coo71]. An AuxPDA
is a Turing machine with a pushdown store in addition to a worktape. When we bound
the space used by an AuxPDA, we bound only the space used on the worktape; the
space used on the pushdown store is “free.” Useful results about AuxPDAs are
summarized in [HU79]. The fact that the languages accepted in time T(n)°" are
precisely the sets accepted by log T(n) space-bounded deterministic and nondeter-
ministic AuxPDAs [Coo71] will be used.

A one-way AuxPDA is an AuxPDA with a one-way input head. One-way AuxPDAs
have been studied before in [Bra77b], [Bra77a], [Chy77], [WB79], and [Wec80]. In
[BDG85] and [Huy85] one-way AuxPDAs were investigated in connection with restric-
ted forms of nonuniform complexity. In most studies of one-way AuxPDAs, the machine
starts its computation with log n space marked off on its worktape; that is the model
used here.

3. Structural characterizations. In this section the non-machine-based characteri-
zations of the class of P-printable sets presented in the Introduction are proved.

THeEOREM 1. The following are equivaleni:

(1) S is P-printable.

(2) S is sparse and has a ranking function computable in polynomial time.

(3) S is P-isomorphic to some tally set in P.

(4) Sc K[klogn, n*] and SeP.

Note. The equivalence of (1) and (4) also appears in [BB86], [HHS86], and
[Rubg6b].

Proof. [(1) = (2)]. The proof is immediate.

[(2) = (3)]. Let S have a ranking function r, computable in polynomial time,
and let there be fewer than p(n) strings of length n in S. Thus the function r, given
by ri(w)=w—r(w) is a ranking function for the complement of S. (Recall that
strings can represent numbers, as explained in § 2.) Also, theset T = o (1" <
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i=r(1")} is a tally set in P; let r; be a ranking function for the complement of T. As
was noted in [GS85], all these ranking functions have inverses that are computable in
time polynomial in the length of their output. It is now easy to show that the function
that takes x of length n to 0" "*if x e Sand to r3'(r,(x)) if x £ S is a P-isomorphism
mapping S onto T.

[(3) = (4)]. Let S be P-isomorphic to T < 0* via some isomorphism f such that
both f and f~' are computable in time n‘. The compressed form of a string x& S of
length n is z the binary representation of | f(x)|. Since f is computable in time at most
n¢, it follows that |f(x)|=n¢, and thus |z|=clogn. To get x back from z simply
compute f'(0%). Since |07|=|f(x)|=n", computing 0° from z takes time at most
polynomial in n, call it n'. Computing f~'(0%) takes time at most [0°|° = (n“)* = n*". The
computation time of x from z is thus =n®+n'=n" for some k=Zc Thus Sc
K[klogn, n*]. If T isin P, then S will also be in P since they are P-isomorphic.

[(4) = (1)]. Assume that S < P and that for some k, S< K[klogn, n*]. On input
n, for each of the n*™' —1 strings of length =k log n, run M,, for at most n* steps and,
if the computation has completed and the result is in S, print it. This process can
clearly be done in time polynomial in n. 0

It should be pointed out that results similar to those of Theorem 1 were presented
in [BB86] as part of an investigation of sets of small generalized Kolmogorov com-
plexity. In [BB86], Balcdzar and Book define ““semi-isomorphisms” and show that a
set has small generalized Kolmogorov complexity if and only if it is semi-isomorphic
to a tally set. Using Theorem 1 we can improve upon their result. First, however, we
need the following easy result.

ProposITION 2. For all M, and k, K [k log n, n*]€ P.

This proposition is readily seen to be true by the following procedure: to determine
if a string x of length n is in K, [k log n, n*], run machine M, on all strings of length
less than or equal to k log n, and accept if and only if M, outputs x on one of these
strings.

COROLLARY 3. There exists a k such that A< K[k log n,n*] if and only if A is
P-isomorphic to a tally set.

Proof. The proof from right to left follows from the argument given in the proof
of [(3) = (4)] of Theorem 1. For the forward direction, let A< K[k log n, n*]. By
Theorem 1 and Proposition 2, K[k log n, n*] is P-isomorphic to some tally set T in P
via some P-isomorphism f. It is now clear that A is P-isomorphicto f(A)c T<{0*}. O

While no good upper bound is known for the generalized Kolmogorov complexity
of sparse sets in P without assuming P-printability, it is not hard to show that every
sparse set in P is a subset of K[O(log n), 2907, However, that is not very informative
since every sparse set in EXPTIME is contained in K[O(logn), 200m,

We remark that, while it is not known whether or not there are sparse sets in P
that are not subsets of K[k log n, n*] for any k, it is not hard to show that, for any
time-constructible function T(n) that is greater than every polynomial, there is a sparse
set in DTIME (7T(n)) that is not a subset of K[k log n, n*] for any k. Also, there is a
nonrecursive sparse set that is not a subset of K[S(n), T(n) ] for any S(n)=0{(n) and
any recursive T(n). As an example of such a set, consider a set consisting of exactly
one Kolmogorov-random string of each length n. Sparse sets such as these are not
P-isomorphic to any tally set.

4. Machine-based characterizations. We now present nrachine-based characteriz-
ations of the P-printable sets. Cook [Co071] showed that a set is in P if and only if it
is accepted by a (two-way) logspace-bounded AuxPDA. By restricting this machine
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to be one way, we obtain a characterization of the P-printable sets.

THeoreM 4. The following are equivalent:

(1) S is P-printable.

(2) S is sparse and is accepted by a deterministic one-way logspace-bounded
AuxPDA.

(3) S is sparse and is accepted by a nondeterministic one-way logspace-bounded
AuxPDA.

Proof. [(1) = (2)]. If S is P-printable, then there is a function f computable in
polynomial time such that f(n) encodes the elements of S of length less than or equal
to n. Thus the set A={n4#i|the ith bit of f(n)=1} is in EXPTIME and can thus be
recognized by a deterministic AuxPDA that uses linear space. Equivalently, an AuxPDA
with n4i written on its worktape can determine if n#ie A without referencing its
input tape (i.e., without moving its input head).

Using this trick, a one-way AuxPDA can easily check if the word on its input
tape agrees with the ith word in the enumeration of S. If the ith word disagrees with
the input in the jth position, it is not necessary to move the input head back to the
start of the tape in order to compare the input with the (i+1)st word. Instead, find
the next word in the enumeration which agrees with the ith word up to (and not
including) the jth position. The following algorithm makes this precise. Let p be a
polynomial such that for all n there are fewer than p(n) elements of S of length less
than or equal to n. The following algorithm can be carried out by a deterministic
logspace-bounded AuxPDA.

begin
At the start of the computation, w=w, - -+ w, is on the input tape and [log n]
space is marked off on the worktape.

=1l nl /Note that the AuxPDA cannot know what »n is until it has read
the entire input. Clearly, however, n =r=2n.

i=1

j=0 /The pair (i,j) will be maintained so that the word on the input
tape will match the ith word in the enumeration of S up through
position j.

step one

Increment j until a j is found (by repeated calls of the form r#1e A?, r#2¢
A?, - - ) such that the jth input symbol differs from the jth symbol of the
ith word of the enumeration of S, or until j = n.

If j = n and the first n symbols of the input match the first n symbols of the
ith word of the enumeration and the ith word has length n, then halt and
accept.

Otherwise go on to step two.

step two

By making repeated calls of the form r#1e A? r#2e€ A?, - - -, find the least
i’ such that i <i’' < p(r), and such that the first j — 1 symbols of the ith and
the i'th words of the enumeration of S agree.

If no such i’ exists, halt and reject.

Otherwise set i:=1i" and go to step one.

end

The AuxPDA described above simply searches through the enumeration of S until
some word is found that matches the input, and accepts if such a word is found. It is
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easy to see that the algorithm is correct. Note that the only time the input head is
moved is in step one, and that the input need only be read in one scan from left to right.

[(2) = (3)]. The proof is immediate.

[(3) = (1)]. Let S besparse and accepted by a nondeterministic one-way logspace-
bounded AuxPDA M. It is easy to construct another nondeterministic one-way AuxPDA
accepting the set S’ ={0"3 w|there is a string x such that |wx|=n and wx e S}. (This
machine will store n in binary on its worktape and then simulate M on w. Then it will
continue the simulation by guessing the n—|w| characters of x. Since M is one-way,
only one bit of x needs to be stored at any time.) Thus S’ € P. By using S’ it is now
easy to construct the elements of S, bit by bit, and thus it follows that S is P-printable.

(This proof was pointed out to the first author by Osamu Watanabe, and simplifies
the proof of the same result, which was presented in [AlI86b]). 0

An interesting result somewhat related to Theorem 4 has recently been proved by
Ibarra and Ravikumar; in [IR86] they show that all sparse CFLs are bounded.

The study of P-uniform circuit complexity is also related to the study of P-printable
sets, and was part of the motivation for the present investigation of P-printable sets.
A P-uniform family of circuits is a set of circuits {C,|n = 1} such that the function n > C,
is computable in time polynomial in n. P-uniform circuits are studied in [All85],
[Allg6a], [BCH84], and [vz(G84].

When studying circuit complexity classes, the class of functions that can be
computed by very fast circuits (i.e., circuits of small depth) is of special interest. Thus,
we are led to consider the class P-uniform NC (PUNC), the class of languages accepted
by P-uniform circuits of depth log®"" n [All86a].

Note that if {C,|n=1} is a P-uniform family of circuits, then it is a P-printable
set. Thus in some sense, the sets in PUNC are those sets that can be computed very
easily, relative to some P-printable set. For example, it is fairly easy to see that all
P-printable sets are in PUNC.

Given this connection between P-printable sets and P-uniform circuit complexity,
it is natural to consider the question of whether or not all sparse sets in PUNC are
P-printable. It was shown in [All85], [All86a] that a set is in PUNC if and only if it
is accepted by a logspace-bounded AuxPDA that moves its input head 2'9e°" " times.
Thus both PUNC and the class of P-printable sets have characterizations in terms of
AuxPDAs with restricted access to the input. On the other hand, we show in the next
section that every sparse set in PUNC is P-printable if and only if every sparse set in
P is P-printable.

5. Some structural questions. Questions relating to the existence and structure of
non-P-printable sets are now presented.

While it is clear that all P-printable sets are sparse and in P, it is not known
whether there are sparse sets in P that are not P-printable. The following theorem
shows some equivalent conditions.

THeEOREM 5. The following are equivalent:

(1) There is a sparse set in P that is not P-printable.

(2) There is a sparse set in DLOG that is not P-printable.

(3) There is a sparse set in FewP—P.

Proof. If S is a sparse set in P that is not P-printable, then the set {x#0"|x is a
prefix of a string of length n in S} is a sparse set in FewP — P, thus proving [(1) = (3)].
[(3) = (2)] is proved by the observation that if S is sparse and in FewP — P, then the
set of accepting computations of a machine accepting S is a sparse set in DLOG that
is not P-printable. Because DLOG < P, the implication of (1) by (2) is clear. [
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As a consequence of the fact that DLOG < PUNC < P, the above is also equivalent
to the existence of a sparse set in PUNC that is not P-printable. This result provides
a nice parallel to the result in [HY84] that there is a sparse set in NP that is not
P-printable if and only if there is a sparse set in NP-P. While NP is the complexity
class most closely related to the existence of non-P-printable sparse sets in NP, FewP
is the complexity class most closely related to the existence of non-P-printable sets in
P and DLOG. As a side note, it is not known whether all sparse sets in P are in PUNC.

Turning now to the structure of non-P-printable sets, we are interested in determin-
ing what they “look like.” Can they be immune to the P-printable sets or must they
have a P-printable subset? The following two theorems partially answer these questions.

THEOREM 6. Let S be a set in P that is not P-printable, and let T(n) be a
time-constructible function that grows faster than any polynomial. Then there is an infinite
set Ae DTIME (T(n)) such that A< S and A has finite intersection with every P-printable
set.

Proof. This is proved using techniques similar to those used in, e.g., [Orp86],
where a result with a similar flavor concerning complexity cores was proved. Let
M,, M,, - - - be an indexing of polynomial-time machines taking input from 0%; each
such machine can be viewed as taking 0" as input and producing a list of strings of
length n. Thus {M;(0%)|i=1} is a representation of all P-printable sets. Since the
intersection of a set in P with a P-printable set is P-printable, § is not contained in
M, (0%) for any i

The idea of the proof is to find, for all i, a string x; in S that is not in M;(0*) for
any j =i Such a string x; must exist, or else S < M,(0*)U M,(0*)U - - - U M,;(0%), and
thus S is P-printable.

Thus the function r(i) =min {n|3x € S, |x|=n and x g M;(0") for all j = i} is total,
monotone, and recursive. Let s be a total, monotone, recursive function that is greater
than r and has the property that the function i- s(i) can be computed in time linear
in s(i); taking s to be the time complexity function for some machine computing r in
unary will suffice.

We also require that our indexing satisfy the condition that machine M, has
running time bounded by T(n)/n on inputs of length n = i. Since T grows faster than
any polynomial, this condition is easy to satisfy (see [Orp86]).

The following routine will run in time O(T(n)) and will accept a subset A of §
that has finite intersection with every P-printable set.

begin on input x of length n
Compute s(1), s(2), - - - until some i is found such that s(i}sn<s(i+1).
//This step takes O(n’) time.
Accept x iff xe §~M,(07) for all j=1i.

/This step takes =T(n) time, since (assuming without loss of generality
that i <n) each of the i simulations performed in this step requires at
most T(n)/n steps.

end

It is clear that A< S, and that this routine runs in time O(T(n)). If x€ A then
for some i such that s(i)=n<s(i+1),x is in $— M;(0") for all j=i Thus M,(0%)
contains no elements in A of length =s(i). It only remains to show that A is infinite.

Let i and i’ be numbers such that s(i") = r(i) <s(i'-+1). By the definition of r,
there is a string x;€ § of length (i) such that x; M,(O""‘) for all j =i In particular,
x; & M;(0™) for all j=1i', since i'=i. Thus x,€ A for all i, so A is infinite. O

It is natural to wonder whether the set A constructed in Theorem 6 can be made
to be in P. A weaker form of this guestion asks whether every infinite set in P has an
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infinite P-printable subset. While this is still undetermined, the following theorem,
pointed out to the first author by David Russo, shows that the sets in NP have similar
structure to the sets in P in this regard.

TueoreM 7. Every infinite set in P has an infinite P-printable subset if and only if
every infinite set in NP has an infinite P-printable subset.

Proof. Assume that every infinite set in P has an infinite P-printable subset, and
let L be an infinite set in NP. Thus there is an infinite set A in P such that L=
{x|3y, x#y e A}. Without loss of generality, assume that there is some k such that
x#y€A=>|x#y|=|x|". By assumption, A has an infinite P-printable subset S, so the
set {x|3y, x#ye S} is an infinite P-printable subset of L. O
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