Theoretical Computer Science 36 (1985) 231-237 231
North-Holland

IMPROVED LOWER BOUNDS FOR THE
CYCLE DETECTION PROBLEM

Eric ALLENDER*

School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA 30332,
USA

Maria M. KLAWE
Computer Science Department, IBM Research Laboratory, San Jose, CA 95193, US.A.

Communicated by M.S. Paterson
Received September 1983
Revised June 1984

Abstract. Lower bounds for the ‘cycle detection problem’ were recently investigated by Fich (1981,
1983). She showed that Floyd’s algorithm was optimal among those algorithms which have M =2
memory locations and which make a finite number of ‘jumps’. A lower bound for the case where
M > 2 was also presented, but the question of whether having more than two memory locations
could actually yield a better algorithm was left open. In this report, we show that it cannot.

A lower bound was also presented by Fich (1981, 1983) for algorithms which have two memory
locations and which make a finite number of ‘back advances’. We show here that the same lower
bound holds even if the restriction on back advances is dropped.

1. Introduction

Let N be the set of nonnegative integers; let D be any set, let f be an arbitrary
function from D to D, and let x€ D be given. The cycle detection problem is to
find i, jeN, i <j, such that f'(x)=f’(x), if such a pair exists.

We assume that no inferences can be made about the behavior of f, except that
when given an element of D as input, it produces an element of D as output. We
assume that any algorithm to solve the cycle detection problem is able to store
representations of elements of D in memory locations, that it can compare two
memory locations for equality, and for any two memory locations x and y, it can
perform x < f(x) and y < x. We restrict our attention to algorithms with a finite
number M of memory locations.

Note that if D is infinite, the sequence x, F(x), ff(x)), f7(x),...maybe cycle-free.
In this case, a cycle-detection algorithm will not terminate. (It is clearly impossible
to determine that a sequence does not have a cycle.)

* Research has been supported by the National Science Foundation under Grant No. MCS 81-03608.

0304-3975/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

232 E. Allender, M .M. Klawe

Let [and ¢ denote the least integers such that [<t and f'(x)=f'(x). Then note
that

(1) we do not require that a cycle detection algorithm find [and ¢,

(2) ff"™(x)=f""(x) for all meN,

(3) flix) =" ""D(x) for all keN.

Results about the cycle detection problem often seem easier to present when the
problem is cast in a different setting. Consider the following situation. You are given
a number line for N, and you have M markers, all of which are initially on zero.
(We follow convention and assume that zero is the leftmost number on the number
line.) Someone has selected two integers | and ¢ (you do not know what / and ¢
are), and your object is to move your markers into an (I, t) stopping configuration,
which is defined to be any configuration in which you have markers on the numbers
i and j, where I=i<j and -1 divides j— i

You are allowed to make the following moves:

(1) Move a marker forward one position.

(2) Pick up a marker and put it down on top of another marker.

Moves of type | are called advances. Advances from the ‘front’ (i.e., rightmost)
pile of markers are called front advances. All other advances are back advances.
Moves of type 2 are called jumps.

Continuing to follow Fich [3, 4], we equate the running time ¢’ of an algorithm
with the number of function evaluations performed by the algorithm. That is,
transferring values from one memory location to another, and testing values for
equality, are ‘free’. (Equivalently, we charge for all advances, but all jumps are
free.) As in [3, 4], we restrict our attention to those algorithrms whose behavior
depends only on [and 1. Thus we denote the running time by #'(/,). We will often
write ' to mean t'(l, t).

Clearly, t'(1, t) = t. It is thus reasonable to measure the complexity of an algorithm
by

sup{t'(L t)/t: I teN}.

Fich analyzed the cycle detection problem using this measure of complexity. Her
results are summarized in Table 1.

The first result in this paper deals with cycle detection algorithms which make
only a finite number of jumps. Among all the cycle detection algorithms which have
appeared in the literature, only Floyd’s algorithm (one of the earliest, see [5, p. 7]
and [2, 6, 7]) falls into this class. All of the improvements on Floyd’s algorithm
presented in [1-4, 6, 7] involve making use of jumps. Fich showed that that had to
be the case if one was restricted to using M =2 memory locations. We show that
it is true in general. That is, Floyd’s algorithm is optimal among all algorithms
making a finite number of jumps—having more than two memory locations does
not help.

Another problem left open by Fich is the question of whether or not back advances
can be used to yield a better algorithm, if jumps are allowed. Although we are

Improved lower bounds for cycle detection problem 233

Tabtle 1

Class of algorithms Lower bound Upper bound
Arbitrary,

M memory locations 1+1/(M—-1) 1+2/(M—1) (using no back advances)
Finite number of jumps, _

M memory locations 1+42 3 (using no jumps, M =2)
Finite number of jumps,

2 memory locations 3 3 (using no jumps)
Finite number of back advances,

2 memory locations 13 +\/§) %(3%-\/5) (using no back advances)

unable to answer this question in general, we are able to show in our second theorem
that back advances do not help in the case where only two memory locations are
used. Thus the algorithms presented in [3, 4] for solving the cycle detection problem
using only two memory locations are optimal, using this measure of complexity.

2. Improved lower bounds

Theorem 1. For any cycle detection algorithm which uses at most M locations and
which performs at most a fixed finite number of jumps,

sup{t'(L 1)/t:] teN}=3.

Proof. Assume we are given an algorithm A with M markers. It has been proved
in [3] that the theorem is true if M =2. Thus we will assume below that M > 2.

Let 0=< a,(i) < a,(i)<- - - < ay (i) denote the positions of the M markers immedi-
ately after step i in the algorithm. (A ‘step’ is either a jump or an advance.) Let the
last jump be made at time 7 and let ¢ be the number of advances performed during
the first 7 steps. Then we will let

a=a(r)+a(r)+ - +ay(r)— ¢

Note that a,(7)+- - -+ap(7) is the number of advances needed to achieve the
configuration at time 7 if no jumps are used. Thus a represents the number of
advances ‘saved’ by performing jumps.

We will also need the constant v. If time 7 is defined as above, then

y =max{ay(j):j=r1}

Constant v is the rightmost position visited by any marker prior to the last jump.
In particular, no marker may ever move from the right of y to the left of v, since
the only way to move to the left is to make a jump.

Case 1: There exists some integer k such that, for all times i, a, (i) — ay (i) <k

234 E. Allender, M.M. Klawe

Let IeN and let t = [+ k Assume that an (/, t) stopping configuration occurs at
time i. Since an, (i) — ap—,(i) < t—1 (and thus the two rightmost markers are not far
enough apart to detect the cycle), we must have ay, ,(i)=[=t—k Thus

L) = ap (i) +ap (i) ay -(i) —a
=3(ay (i) ~a
=3(t—k)—a,
and hence
sup '/t=sup{t’'(,,1)/t: [, teN}
zsup{3—Ck+a)/(I+k): leN}
=3.

Case 11: The set {a,, (i) —ay_,(i): i €N} is infinite.

In this case, if i, = min{i: ay (i) — an_(i) = n}, then i, is defined for all neN.
Now let X ={i,: n>vy and a,,_,(i,)> y}. Since the set {ay,_,(i): ieN} must be
infinite in order to detect cycles when [is arbitrarily large, and since ay, (i)> vy
implies that the algorithm has finished performing jumps and hence that a,,.(i+
1) = ap (i), it follows easily that

(1) X is infinite,

(2) {an_(i): i€ X} is infinite,

(3) {anm(i)— aM,,(f): i€ Y} is infinite, where Y is any infinite subset of X, and

(4) if ie X, then, for all j<i, ap{j)—an _(j) < an(i)—an_(i).

Case 11.1: For infinitely many i€ X, ay,_,(i)>3(an (i) +an (i) (see Fig. 1).

ayoli) 1 t a!\/!———l(i) an (i)
| | { | 1 |

I |
e 3{ap (i) + apy (D))

Fig. 1. CaseIL1.

Let ie X, where ay _-(i)+an(i)<2ay_(i). Let I=ap (i)+1 and t=1+
an (1) = apng i (1) + 1= an (D) +ap () — ap 1 (1) +2<ap, () +2.

Note that since > an (i) — an—1(i) >, no (t) stopping configuration can be
reached until after the last jump has been made. Moreover, since only locations
an (i) and an,_,(i) are to the right of I and (by point (4) above) the front two
markers have never been far enough apart to detect a cycle of length 1t~/ no ([t)
stopping configuration has been reached by time i. Now

(L t)yz ap (i) +ay_ (i) +ay (i) —a
= ap () an (D) (=24 ay () —ap (i) —

=2(ap (N +(1-2)~«

>3(t-2)—«

Improved lower bounds for cycle detection problem 235

and hence
t’>3‘6+a>3“ 6+ a
t t an (i) — a1 (i)

Now it follows by point (3) above that

sup t'/t=3.
. Case 11.2: For all large i € X, Hap (i) + ap_2(i)) = ap (i) (see Fig. 2).

a;\fvz(i) aMi/l(i) f It aMI(i)
I | I |

|
i
* ;(aM(i)+ apga(i)—>

Fig. 2. CaseIL2.

Let i X, where an (i) + ap (i) = 2ap1(i). Let [= anr—i{i)+1and r=1+1.Since
there is only one marker to the right of [> v, the algorithm cannot have reached
an (I, t) stopping configuration yet. Thus we have that

t'(L 1) = ap () + an— (D) + an (i) —a
=3(ay (i) —a

=3(t—-2)—«

and hence

su tl>su {3 bta 'EX} 3 i
—= o 1 | =3.
pt p aMVl(i)+2

Theorem 2. For any cycle detection algorithm which uses only two memory locations,

sup{t'(L, 1)/ t: I, e N} = 1(3+/5).

Proof. Assume we are given an algorithm A with two markers. As in Theorem 1,
let a,(i) < a,(i) denote the positions of the two markers at step i in the algorithm.
Since 3(3 +\/5) <3, we can assume by Theorem | that A makes an infinite number
of jumps. For each neN, let i, be a step in the algorithm which occurs between
the nth and the (n+ 1)st jump, such that a,(i,) —a,(i,) is maximal and i, is as small
as possible. That is, if the nth jump occurs at time j, and the (n+1)st jump occurs
at time k, then

i =min{i: j=i<k andifj<sh<k then a;(h)—a,(h) = a>(i) —a(i)}.

236 E. Allender, M.M. Klawe

As an aid to clarity, let x, = a,(i,) and y, = a,(i,). In the following, we will make
use of the set X defined as

X ={n: y,= G+ V5)x.}.

Case 1: The set X is infinite.

Let ne X. Let I=x,+1 and 1= x,+2. Note that at time i, the leftmost marker
has never been to the right of x,, since it is impossible for the leftmost marker to
move to the left. Thus an (/, t) stopping configuration is not reached before time
i,+1, and

P 1)/ 1>y,)t =53+t =2)/t.

Now as x, and hence can be chosen arbitrarily large it is clear that sup(t'/t)=
13+ V5).

Case 11: The set X is finite. N

In this case, there is some K such that y, <%x,,(3+\/5) for all n= K. Let Y=
{n=K: ayh)-a/(h)<ay(i,)—a,(i,) for all h<i,}. Note that if ne Y, then i, is
the first time that the distance between the markers has been as great as y, — x,.
Since the set {a,(i) —a,(i): i e N} is infinite, it follows that Y is infinite.

Let ne Y, so y,,<%x,,(3+\/§). Let =0 and t=y,—x,+1. Since the distance
between the markers is never more than y, —x, between jumps n and n+1, there
is no chance of reaching an (I, t) stopping configuration until after the (n+1)st
jump. At least ¢ moves will be necessary after the (n + 1)st jump, in order to get the
markers far enough apart to detect the cycle. Thus,

>t+y,,: 1 1

Z/
—= 1+ =1+
t t t/ v, 1= (x, = 1)/ y,
1 1

+ =1+ = =
1-12(x, — DY [x.(3+5)] 1-2/(3+5)+2/[x,(3+5)]

>1

Now it follows that

t 1
— 1+ = = Y
e SUP{ 1= 2/Gv5) 12 G+d5] }
1 —
= =1(34Y5). O
1-2/(3+5) ()

3. Conclusions and open problems

Our knowledge about the cycle-detection problem using this complexity measure
is summed up in Table 2.

Improved lower bounds for cycle detection problem 237

Table 2

Class of algorithms Lower bound Upper bound
Arbitrary,

M memory locations 1+1/(M-1) 1+2/(M-1) (using no back advances)
Arbitrary,

2 memory locations i3 +J§) 13 +J§) (using no back advances)
Finite number of jumps,

M memory locations 3 3 (using no jumps, M =2)

Obvious open problems remaining are the following:

(1) Can back advances be used to obtain a better algorithm if M >2 memory
Jocations are used?

(2) Canthe gap between the upper and lower bounds in the general case be closed?

Acknowledgment

The first author would like to thank Kim King for bringing this problem to his
attention and for offering many helpful comments, which contributed to making
this presentation clearer. Thanks are also due to Faith Fich, for putting the authors
in touch with each other.

References

{1] M. Beeler, R. Gosper and R.W. Schroeppel, Hakmem, M.LT. Artificial Intelligence Lab. Memo No.
239 (item 132) (1972) 64.

[2] R.P. Brent, An improved Monte Carlo factorization algorithm, BIT 20 (1980) 176-184.

[3] F.E. Fich, Lower bounds for the cycle detection problem, in: Proc. 13th Annual ACM Symposium
on Theory of Computing, Milwaukee, W1 (1981) 96-105.

[4] F.E. Fich, Lower bounds for the cycle detection problem, Journal of Computer and System Sciences
26 (1983) 392-409.

[5] D.E. Knuth, Seminumerical Algorithms, The Art of Computer Programming, Vol. 2 (Addison-Wesley,
Reading, MA, 1969).

[6] R. Sedgewick and T.G. Szymanski, The complexity of finding periods, in: Proc. 11th Annual ACM
Symposium on Theory of Computing, Atlanta, GA (1979) 74-80.

[7] R. Sedgewick, T.G. Szymanski and A.C. Yao, The complexity of finding cycles in periodic functions,
SIAM Journal on Computing 11 (1982) 376-390.

