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1. INTRODUCTION

Berman and Hartmanis showed in [5] that ail of the most familiar NP-complete
problems are p-isomorphic, and thus from the standpoint of complexity theory they
can be thought of as simple reencodings of the same set. It was conjectured in [5]
that in fact all NP-complete problems are p-isomorphic. In the intervening decade,
the Berman-Hartmanis conjecture has provided the motivation for many
investigations into the structure of complexity classes, including numerous papers
dealing with sparse sets {e.g., [19]) and studies of p-isomorphism degrees [20, 23 ].

Joseph and Young reconsidered the Berman-Hartmanis conjecture in [16], and
they presented heuristic evidence that the conjecture fails. More specifically, it was
conjectured in [16] that there are NP-complete sets which are not p-isomorphic,
assuming that one-way functions exist.

The Joseph-Young conjecture motivated an investigation of the class of sets
complete for EXPTIME, since all sets complete for EXPTIME are p-isomorphic if
one-way functions do not exist [4, 6, 25]. Interesting results in this setting have
been reported in [25, 17, 18, 7].

None of the papers which have appeared since [5] have dealt with the probiem
of taking an NP-complete set A and building a p-isomorphism between A and SAT.
If one could do this in general, then it would follow that the Berman-Hartmanis
conjecture were true and hence that P # NP: thus such a program is likely to be dil-
ficult to carry out. However, if we assume that the NP-complete set A is complete
under a restricted class of reductions. we may have a better chance of building the
isomorphism. That is the problem considered in this paper.

* Portions of this research were carried out while the author was supporied by NSF Grant MCS 81-
03608.
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1-L reductions were defined in [8] and were considered again in [9, 13-15, 21,
22, 12]. Basically, a 1-L reduction is a function computed by a logspace-bounded
Turing machine which has a one-way input tape; more complete definitions will be
given in Section 2. The major reason for introducing such weak reductions is that
finer distinctions can be made using 1-L reductions than, for instance, logspace
reductions. Although 1-L reductions are not very powerful, it turns out that they
are powerful enough for most practical applications; in [8] it was shown that most
NP-complete problems which have appeared in the literature are complete for NP
under 1-L reductions. Note, however, that it Is easy to construct a set p-isomorphic
to SAT which is not complete under 1-L reductions [8]. In [97 it is shown that no
set complete under 1-L reductions can be sparse. We greatly improve on that result;
we show that all such sets are “almost” p-isomorphic.

Independantly, Huynh [12] has shown that sets complete under 1-L reductions
have exponential density. That result follows as a corollary of the main result
presented here. (Huynh actually shows a somewhat stronger result, using
“ponuniform” 1-L reductions.)

Let a function f be poly—one if, for all y in the range of /. | /'~ () = 1y]°". Note
that a function is poly-one if it is “almost” one-one. in the sense that it does not
map very many strings 1o any given string. Poly-one functions which have hard
inverses are considered in [3]; here. we shall consider poly—one functions with easy
inverses.

A function f'is strongly invertible if there is a polynomial-time function which, on
input y in the range of /. prints out all of the elements of /~'(»). Note that a
strongly invertible function is necessarily poly-one.

THEOREM 3.1. Let A ke complete for NP (or DLOG, NLOG, P. NEXPTIME,
etc.) under 1-L reductions. Then A is complete under lengih-increasing, strongly
invertible <7 reductions.

71

One result of [5] states that any set which is complete for NP under length-
increasing, one-one. invertible </ reductions is p-isomorphic to SAT. Thus
Theorem 3.1 says that sets complete for NP under I-L reductions are “almost”
p-isomorphic.

Given a set L which is complete under one—one 1-L reductions (which are not
known to be honest). Theorem 3.1 shows that L is complete under length-
increasing, invertible functions which are not necessarily one-one. The next result
eliminates this defect.

THEOREM 3.2. Lei A be complete for NP (or DLOG, NLOG. eic.) under one—one
1-L reductions. Then A is complete under one-one. length-increasing, invertible <[,
reductions.

For deterministic complexity classes containing PSPACE or EXPTIME, the
result of Theorem 2.2. together with the techniques of [4. 6. 257 vields a stronger
result.
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THEOREM 3.3. All sets complete for PSPACE (EXPTIME, DTIME(Q"O‘”), eic.)
under 1-L reductions are p-isomorphic.

2. PRELIMINARIES

.. We assume familiarity with the usual notions of Turing machine and complexity

classes such as DLOG, NLOG, P, and PSPACE. EXPTIME and NEXPTIME
refer to DTIME(29) and NTIME(2°™), respectively. For background and
definitions, consult [11].

The notation |S| denotes the cardinality of the set S; |w| denotes the length of the
string w. The empty string is denoted by ¢. We consider only strings over the
alphabet X = {0, 1}. Occasionally, we may refer to strings in {0, 1, # }*; this
should be viewed only as a notational convenience. Such strings should be viewed
as being in {00,01,11}* We assume a standard lexicographical ordering on
strings; we say x < y if x comes before y in this ordering.

A <?” reduction is a function f/ which is computable in time polynomial in the
length of the input. We say 4 <72, B via fif for all x, xe A< f(x)e€ B. A logspace
reduction is a <? reduction which is computable in logspace. A log-lin reduction
[24] is a logspace reduction f such that for all x, | f(x)| = O(|x|). A reduction f1s
honest if there is a polynomial p such that for all x, p(] f(x)|)> [x]; f is length-
increasing iff | f(x)| > |x| for all x. We will call a <Z, reduction invertible if it is
one-one and strongly invertible. A function fis a <!, reduction if it is a Jength-
increasing, invertible <? reduction. Two sets 4 and B are p-isomorphic if A<}, B
via an invertible bijection f.

The Berman-Hartmanis conjecture states that all NP-complete sets are
p-isomorphic [5]. The following facts are frequently useful in work relating to
p-isomorphism.

Fact 1 [5]. f A<” Band B!, A, then 4 and B are p-isomorphic.

FacT 2 [5]. An NP-complete set 4 is p-isomorphic to SAT iff 4 x Z* <{, 4.

Sets A4 such that A x Z* </ A4 are called p-cylinders in [6,20] in analogy to a
related notion in recursive function theory. A function p such that 4 x Z* <, 4 via
p is called a padding function for A. A nice formulation of results on p-isomorphism
in terms of p-cylinders may found in [20].

A set S is sparse iff there is a polynomial p such that p(n)>[{xeS|n> [x|]|. Sis
p-printable if the function which maps 1" to an encoding of {x€ S|n2 |x| } is com-
putable in time polynomial in n. Clearly, all p-printable sets are sparse. P-printable
sets were first defined and studied in [10].

Theorems 3.1, 3.2, and 3.3 apply to a large number of common complexity
classes. Let us say that a class of languages % is suitable if
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(1) % is closed under log-lin reductions.
(2) I Le%, then {x*"|xeLje%.
(3) There is a p-cylinder which is complete for ¢ under <7, reductions.

It is easy to verify that all of the classes in the list (DLOG, NLOG, P, NP,
PSPACE, EXPTIME, NEXPTIME, DTIME(2""), ...) are suitable.
" The definition of 1-L reduction is somewhat controversial. As defined in [8,9], a
1-L reduction is a function computed by a Turing machine with a cne-way read-
only input tape with an endmarker, a one-way write-only output tape, and a read-
write worktape with endmarkers, such that on inputs of length n, the worktape has
Mog n7] cells between the endmarkers. Such a Turing machine is called a 1-L
machine. Given a 1-L machine M, a configuration of M is a string encoding the
worktape contents, the positions of the input, output, and worktape heads, and the
{inite state of M at a given point in a computation. The results in this paper are
proved using this definition of 1-L reduction. The problem with the definition is
pointed out by the following theorem, which contradicts Proposition 1.3 in [8].

THEOREM 2.1.  The class of 1-L reductions is not closed under composition.

Proof. Let f(x)=1x if [log |x[7] is even. and f(z)=0x otherwise, and let
g(x)=x1""if the last bit of x is 1, and g(x)=x otherwise. ]t is easy to see that f
and g are both 1-L reductions. However, we now claim that h(x)= f(g(x)) 1s not a
1-L reduction.

Assume that M is a 1-L machine computing h. First note that M cannot produce
any output until it has scanned the entire input. since for all strings x, the first bit of
h(x0) is different from the first bit of A(x1). (If ['log |x0| 7] is odd, then h(x0)=0x0
and h(x1)=1x11""_1f [log |x0| 7 is even, then A(x0)=1x0 and h(x1)=0x11"1)

M has only polynomially many worktape configurations: thus there must be
some length n such that the number of worktape configurations of M on strings of
length n is less than 2”. Thus if we associate with each string - of length n the
configuration C. which M enters when it first scans the final symbol of x, it follows
that there are two strings u and ¢ of length n such that C,=C,. and thus by the
observations in the previous paragraph, M produces the same output on input w0
as on input v0. Thus M does not compute /. contrary to assumption. §

1t should be noted that an earlier version of this paper. [2]. contained a proof of
Theorem 3.3 which relied on closure of 1-L reductions under composition. The
proof presented in the current paper does not suffer from that defect.

Since it is desirable for a class of reductions to be closed under composition, one
is tempted to modifv the definition in such a way that closure under composition
holds. This is easilv done. Define a 1-L’ reduction o be a function computed by a
Turing machine with a one-way read-only input tape with endmarker, a one-way
write-only output tape. and a read-write worktape which is initially set to ail
blanks. such that for all inputs x. at most [ log 1x] 7] cells of the worktape are ever
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visited. Note that this corresponds to the usual notion of on-line space-bounded
computation. The following proposition is easily proved.

ProrosiTION 2.2. The class of 1-L’ reductions is closed under composition.

It is also easily seen that SAT and many other NP-complete sets are complete
under 1-L’ reductions. The same is true for the standard sets complete for PSPACE.
~Unfortunately, much of the motivation for 1-L reductions comes from small com-
plexity classes such as DLOG and NLOG; for instance, the graph accessibility
problem GAP is complete for NLOG under 1-L reductions, and the so-called
deterministic graph accessibility problem GAP1 is complete for DLOG under 1-L
reductions [8]. It is not at all clear that there is a nice encoding for these problems
such that they would be complete for the appropriate class under 1-L reductions.

Although we feel that it is worthwhile to resolve the difficulties with the definition
of 1-L reduction, for the purposes of this paper it will suffice to use the definition
which makes 1-L reductions as powerful as possible, since that has the result of
strengthening the theorems proved here.

3. MaIN RESULTS

THEOREM 3.1. Let € be any suitable class of languages. If A is complete for €
under 1-L reductions, then A is complete for € under length-increasing, strongly-
invertible <P’ reductions.

In particular, ¢ can be any of the natural classes DLOG, NLOG, P, NP, etc.
For clarity, we will assume that ¢ = NP throughout the proof. The proof consists of
a series of lemmas.

LEMMA 3.1. There is a set SAT' p-isomorphic 10 SAT such that we SAT' = |w|
is a power of 2 and |w|> 1.

Proof. Let SAT' = {x10""'|r = 2fleelx1+1 _|x| and x € SAT]}. Clearly,
SAT <, SAT', and thus SAT and SAT’ are p-isomorphic. |

In what follows, let 4 be a given set which is complete for NP under 1-L
reductions, let B= {x?"|xeSAT'}, and let f be a 1-L reduction computed by a
machine M, where f reduces B to 4.

LeEmMMA 3.2, There is a p-printable set S such that if xe SAT' and x4 S, then M
on input x*'*! produces at least one bit of output while reading each copy of x. So, in
particular, S contains all x€ SAT' such that | f(x* ™) < |x].

Proof. On input n, the following routine prints a list containing all x€ SAT’ of
length at most n such that M, on input x*'¥, fails to produce any output while
processing some copy of x.
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begin
for m:=1 to [logn] //Print all such x with |x|=2".

(1) Create a labelled digraph G=(V.E) with V being the set of all
configurations of M of size 1+2m (=log |x2™0f x| =2"), and E
containing an edge labelled ae X U {¢} from C, to C; T M has a move
C,;— €, which consumes input a and produces no output. (The label /, of
a path p in G is the concatenation of the labels of its edges.)

(2) for each configuration C,e V

Make a copy G, of G
By doing a breadth-first search of G, starting at C,, find and mark
those edges which can be traversed by a path p from C,, where
1] <2
Dpe]ete all unmarked edges and all vertices which are not connected to
C, by a marked path.
for each C, n G,
if there are two paths from C, to C;, mark C,
Delete all marked vertices.
//G; is now a tree, since for every C, in G,. there is exactly one path
from C, to C,.
for each C; in G,
if the path p from C, to C, has |/,| =27, put [, in TEMP
for each xe TEMP
output X.
end

To see that the routine is correct, let x be any word in SAT’ such that there
exists some r < 2 | x| such that after reading x". M produces no output while reading
the r + 1th x. We need to show that the routine outputs x on input n 2> |x|.

Let C, be the configuration M enters after consuming x’. and let C; be the
configuration M enters after consuming x"~ g

Let us assume that the routine does not output x. Then there must be some path
pin G, from C;to C,. with /, = # x. Note that without loss of generality, {w| < |x|,
since all edges corresponding to words of length > |x]| are deleted before we check
for duplicate paths.

Consider M’s computation on input xwx=""~"~' In order to determine M’s
initial configuration. we must calculate [log Ixwx2 ™ =17 Since xe SAT/,
|x| = 2" for some m>0. Thus

2m+1=Tlog2"(2""'—1)]="Tlog 2m =17

=[log 2 |x|”— [x]|

<[log2 x|~ — x|+ |n]]
~ 2=

<Tlog?2 (x|"1=2m+1

jxi—r—13

That is. M’s initial configuration is the same on input XX as on mput
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x> Thus on input x'wx?™~7=1 M enters configuration C; after reading x’,
enters C, after reading w without producing any output while reading w, and then
finishes the computation, reading x* '~ "' Thus M produces the same output on
input x'wx2™-""1 as on input x?"; thus f(x'wx*™~"" )= f(x*"*) and
xwx2¥1=r=1e B since x>*eB. Thus xwx?™-""1= 32" for some yeSAT"
Since |w|<|x|, we must have |y|<|x|. However, |y|=|x| implies y=z=w,
~ which contradicts x#w. Thus |y| < |x|. However, |y| <|x| implies |y| <2,
which implies |32 <221 <22+ 2 |x'wx?™ =77 which contradicts
x’wx2 Ixl—r—1 — yQ l}’l‘ '

LEMMA 3.3. There is a polynomial q, such that ye A=>|f"'(y)n X" < q,(n) for
all n.

Proof. Note that since yeA, we have that f~'(y)= B. We thus have
|~ (y)n X" =0<gq,(n) unless n=2m? where m is some power of two. If
n=2m?, then we may write /'~ '((»)) = {x?", x3", ..., x}™} for some r > 0.

M, in its computation on x3™, reaches a point when it has consumed the first x,
of the input, has output some prefix 3’ of y, and is in some configuration C,.

Since f(x*") =y for all 7, 1 <i<r, M reaches a point in its computation on each
x2” when it has scanned some prefix x; of x7”, has output y’, and is in some
configuration C,. If C;=C,, then

(1) Ix/l=1x]|, since a configuration of M records the position of the input
head.
, M 1 Hi L2nt T 1 ’ "y o
(2) M outputs y on input x/x;, where x;” = x/x/. Note that |xx;|=n.
(3) xjx/€B, and thus x/x; = x;” for some k, 1 <k<r.

Since |x,;| =m < |x}"|/2=|x/x]|/2, x, is either a prefix of x;, a suffix of x//, or both.
Thus i=k=j Thatis, C,=C,=i=].

Thus r is less than or equal to the number of configurations of M on inputs of
length n. Since M is a logspace-bounded machine, this number can be bounded by
some polynomial g,. }

LEMMA 34. Let preimage(y)= {x|f(x)=y and |x| <|y|}. Then |preimage(y)|
can be computed in time polynomial in |y|, and preimage(y) can be computed in time
polynomial in (]y| + {preimage(y)|).

Proof. Let M’ be a logspace-bounded nondeterministic Turing machine which,
on input y, will guess a string x of length no greater than |y| and check that
f(x)=y. (Since fis a 1-L reduction, the bits of x can be guessed one at a time, and
thus it is not necessary to store all of x: thus logspace is sufficient.) Clearly, such a
machine M’ can be constructed such that there is a one-to-one correspondence
between accepting computations of M’ and elements of preimage(y).

In order 1o compute |preimage(y)|. first build the digraph G= (V. E) with
configurations of M’ as vertices, and edges representing the +— relation. Without
loss of generality, assume that G contains no cycles (ie., assume that M’ keeps
track of the number of steps it has executed). The following simple routine com-
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putes. for each C in V. the number of accepting computations of M’ starting
from C:

begin
repeat
forall Cin V

if C is a rejecting configuration
then count(C) :=0

if C is an accepting configuration
then count(C) =1

if C is not a halting configuration

and count(D) is defined for all successors of C

then count(C) :=sum( {count(D)|D is a successor of C})
until count(C,,,) is computed, where Ci; is the initial configuration
end

It is clear that count(C,,) is |preimage(y)|. and that the computation can be
performed in polynomial time.

In order to enumerate preimage()), it suffices to enumerate all paths in G from
C,,. to accepting configurations. Each such path p corresponds to an element
x € preimage(y). Computing x, given p is straightforward. The entire computation
can be done in time polynomial in (| ¥|+ |preimage(y)}). |

Remark. Nowhere in the proof of Lemma 3.4 is use made of the fact that fisa
reduction of B to A. Thus any poly-one length-increasing 1-L reduction is strongly
invertible. See aiso [17] for more general results.

By Lemma3.3. there is a polvnomial ¢ such that if xeSAT’, then
ipreimage( f(x”"""))| < g(lx]).

We are now ready to define a procedure which computes a function g which we
claim is a strongly invertible. length-increasing. <7, reduction of SAT' to 4.

Since SAT' is p-isomorphic to SAT, there is a one-one, length-increasing, inver-
tible padding function p such that p(x. y)€ SAT’ iff xeSAT'. Let T be some fixed
clement of SAT’. Let a(x) be the string which differs from x>"' only in the
rightmost bit. Let rejectable(x) and trash(x) be defined by the following procedures.

rejectable(x)
begin
if |x| is not a power of two greater than 1 or
x¢Sand | f(x* )< x| or
ipreimage( f(x~ "))l > g(|x]) or
[Ipreimage(f(x* ")) < g(|x]) and
there is some element of preimage(/(x~ ™)) which is not of the form v

then return true
efse return faise

end
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trash(x)

begin
let ¥ be the least such that p(T, x # v)¢ S
return f(a(p(T, x # ¥)))

end

~ The function g is computed by the following routine.

g(x)
begin
if rejectable(x)
then
g(x) = trash(x)
else
if x¢ S
then
glx)=f(x*™)
else
let y be the last such that p(x, y)¢ S
if rejectable(p(x, v))
then
g(x)=trash(x)
else
g(x)=f(p(x, y)*'7"")
end

LEMMA 3.5. The routine presented above computes g in polynomial time.

Proof. This is immediate from Lemma 3.4, except for verifying that the
operation “let y be the least such that p(x. )¢ S can be computed in polynomial
time. Since S is sparse, at most |x|?"" elements of p(x, 2*) need to be examined in
order to find some 1 such that p(x, »)¢S. |

LEMMA 36. g is a length-increasing reduction of SAT" 1o A.

Proof. 1f x is in SAT’, then rejectable(x) is false, and x*¥e B, and { f(x?"),
F(p(x, y)2P>ly ye I*) < A I, in addition, x ¢ S, then | g( )i—]f(x"‘)!>}><, If
xeS and v is the least such that p(x. ¥)¢ S then |g(x)| = |f(p(x, ¥)* """ >
Ip X, .V)l > ixl

If x is not in SAT and rejectable(x) is false, then since x is not in SAT, x?¥ ¢ B,
and p(x., v)>/7'~"¢ B for all y. That g is length increasing and g(x)¢ 4 follows by
an argument similar to that in the preceding pafaeraph

If x is not in SAT ', then if rejectable(x) is true, g = fla(p(T, x # v))). which is
not in A4 since a(p (T x # v)) is not of the form z° 7, and hence is not in B. Since
T, x # vy eB and p(T.x # ¥)¢S. M outputs at Jeast one bit while
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processing each copy of p(T,x # y) on input p(T, x # y)?!P7#>)1 Since
a(p(T, x # y)) differs from p(T,x # y)? P Tx# 30 only in the rightmost bit, it
follows that |g(x)| = | fta(p(T. x # ) > p(T, x # izixl |

LEMMA 3.7. g is strongly invertible.

" “Proof. The following procedure compuies the strong inverse of g.

inverse(y)
begin
if |preimage(y)| <4g(»)
then
compute preimage(y)
for each w in preimage( V)
if wis of the form x?' and g(x)=Y¥
then put x in LIST
if w is of the form p(x, u)? 7" and g(x)= ¥
then put x in LIST
if w is of the form a(p(T. x # u)) and g(x)= ¥
then put x in LIST
else
for each prefix ' of ¥
for each configuration C of M of length <[log ||
for each s€ {0.1]
let y, be the string which M outputs when in configuration C with s
remaining on the input tape
if |preimage()'y )l <4l Iy vell)
then
compute preimage( Vvel)
for each w in preimage(3'Vc.,)
if v is of the form p(T, x # u)’ """ “Mand g(x)=y
then put x in LIST
output LIST
end

To see that the routine is correct. note that if g(x)= », then either [g(x)=
£(x> ") and {preimage( /(x> ")) < g(Ix]) < q(1¥] )] or [g(x) = f(plx,u)* 7**") and
|preimage( g(x))| <gtlx])<q(ly])] or [g(x)=flalplT.x # u)))]. Clearly, the
only difficulty arises in the case g(x) = fla(p(T, x # u))).

if g(x)=flalp(T.x # u))). then glx)= ', where M outputs )’ before reading
the Tinal input character. The routine tries all prefices y’ of » and generates all
strings - which M could possibly affix to v, and then checks 1o see if
T, x # u)y 777 *e preimagel 1'z) for any w.

1t is clear that the running time is polynomial. §
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Proof {of Theorem 3.1). Let A be any set complete for NP under 1-L reduc-
tions, and let C be any set in NP; we need to show that there is a strongly inver-
tible, length-increasing < Z reduction from C to A. Since SAT' is complete for NP
under </, reductions, there is a </, reduction h from C to SAT’. Lemmas 3.1
through 3.7 show that there is a strongly invertible, length-increasing <, reduction
¢ which reduces SAT’ to A. The function gech is the desired reduction from C
0 A B

The next result shows that if f is one—one, then we can transform it into a <7,
reduction.

THEOREM 3.2. Let € be as in the proof of Theorem3.1. If A is complete for €
under one—one 1-L reductions, then A is complete for ¢ under < reductions. Hence
all sets complete for € under one-one 1-L reductions are p-isomorphic.

Proof. The function g constructed in the proof of Theorem 3.1 fails to be
one—one, since for certain strings x and 3 we can have g(x)=g(p(x, y))=

f(p(x, y)?'7). The function g’ computed by the following routine avoids such
behavior:

g'(x)
begin
if rejectable p(x, 0)
then
g'(x) = trash(x)
else
if p(x,0)¢ S
then
g'(x)=f(p(x, 0)*7=21)
else
let y be the least such that p(p(x, ¥),1)¢ S
if rejectable(p(p(x, y). 1))
then
g'(x)=trash{x)
else
g(x)=f(plplx, ¥). 1)7 )
end

For all strings x, either g'(x)= fla(p(T,x # ¥))). g'(x)= f(plx,0)717x00),
or g'(x) = fip(p(x, y), 1?1770y for some y. Since f is one-one, and
since for all s x and all y,, y.. ¥yi and .. talp(T. x # vy)).
plx. Q)7 70, pip(x. y5). 1)? PP la(p(T. = # 33), plz. Q) 700,
piplz. v4). 1) IPr=3a i = o o' is one-one. The proof that g’ is length-increasing
and invertible is the same as in the proof of Theorem 3.1. §



ISOMORPHISMS AND 1-L REDUCTIONS 347

For larger complexity classes. the technigues of [4] (see also [6.25]). vield a
stronger resuit.

THEOREM 3.3. Let % be any suitable deterministic time- or space-complexiry class
which contains PSPACE or EXPTIME. All sets complete for € under 1-L reductions
are p-isomorphic.

Proof. We prove only that all sets complete for PSPACE under 1-L reductions
are p-isomorphic. The resuits for other deterministic classes can be proved similarly.
This proof is based on the techniques of [25].

Let M,. M,. .. be an indexing of all 1-L machines. and let A be any set complete
for PSPACE under 1-L reductions. Let QBF be the set of all true quantified
Boolean formulae: QBF is complete for PSPACE under one—-one 1-L reductions
[8].

Consider the set S accepted by a Turing machine M which performs the
following computation:

begin
On input = of length n. mark off n- space.
if - is not of the form i # x # 110" halt and reject.
Run M, on input =. (Do not store the output of M,. but do record how much
output M, produces on input =.) If more than n° space is required. halt and reject.
if [M (o) < |7
then
accept - iff M (z)¢ A
(Note that this step requires only polvnomial space, since it involves
checking if a string of length less than |z} 1sin A.)
else for all « # v such that w # r<x # ¥
Run M, on input i # u # 10" If more than n” space is required. hait and
reject. Compare the output of M, on input i # u # 107 with the output of M,
on input i # x # 110" (This comparison can be done bit-by-bit. so that the
entire output does not need to be stored all at one time. )
if the output of M, on mput i # u # 10’ = the output of M, on nput

i # x # 110
then
Halt and accept iff w¢ QBF
endfor

(If the computation reaches this point. there is no u # v <X # V such that the
output of M, on input [ # u # 10’ = the output of M, on input i # x # v 10%)
Halt and accept iff xe QBF

end

Clearly. Se PSPACE. Thus there is some I-L reduction computed by some
machine M, reducing S to 4. There 15 some constant r such that for all strings x
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and y, M can carry out the simulation of M, on mput i # x # ¥ # " in n? space.
Note that for all z of the form i # x # y # 10', it must be that | M (z)| > |z|, since
otherwise the diagonalization assures that M; does not compute a reduction of S to
A. If w=the output of M, on input i # x # y # 10" = the output of M, on input
i#u#v#10 for some u#vF#EX#Yy, then let u#ov<x#}y be the
lexicographically smailest two strings which map to w in that way. Then we A iff
i#u#pv# 10 eSiffucQBF, and wediff i # x # v # 10" e S iff u¢ QBF. This
is a contradiction. Thus the function f which takes x # y to the output of M, on
input i # x # v # 10’ is a one—one, length-increasing function. Ailso, f 1s com-
putable by a 1-L machine. Furthermore, i # x # y # 10°€ § iff x€ QBF, and thus
fix#v)ediff i# x# 1y # 10°eS iff xe QBF. That is,  is a one—one, length-
increasing 1-L reduction from QBF # X* to A4. Since by the remarks after
Lemma 3.4, all one-one length-increasing 1-L reductions are easy to invert, it
follows that fis a </, reduction from QBF # Z* to 4, and thus A is p-isomorphic
to QBF. §

4. OBSERVATIONS AND QUESTIONS

Let us say that the Berman-Hartmanis conjecture is very false if there are sets
complete for NP under 1-L reductions which are not p-isomorphic. It 1s known
that if the Berman-Hartmanis conjecture is true, then P # NP (since if P=NP
then finite sets are NP-complete). It follows from Theorem 3.3 that if the
Berman-Hartmanis conjecture is very false, then NP # PSPACE. We refrain from
conjecturing that the Berman-Hartmanis conjecture is very false.

In [16], Joseph and Young posed the question of whether the Berman-
Hartmanis conjecture is true iff one—one one-way functions do not exist. A possible
first step toward answering this question would be to show that all sets complete
for NP under length-increasing strongly invertible reductions are p-isomorphic. We
have been unable to show that this is true, even with the additional assumption that
the reductions under consideration never map more than two different strings to the
same output.

The techniques used in this paper are very specific to 1-L reductions. For
instance, consider sets which are complete for DTIME(29") under two-way DFA
transductions. (A number of such sets are presented in [24].) It follows from the
results of. e.g., [25]. that all such sets are p-isomorphic. However, nothing 1s
known about sets complete for NTIME(29") under two-way DFA reductions; 1t 1s
not even known if such reductions can be replaced by one—one or length-increasing
reductions, although it follows from results in [1] that all such reductions are easy
to invert.
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