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We consider directed graphs which have no short cycles. In particular, if » is the number of
vertices in a graph which has no cycles of length less than n—k, for some constant k<4n, then
we show that the graph has no more than 3% cycles. In addition, we show that for k=4n, there
are graphs with exactly 3% cycles. We thus are able to show that it is possible to bound the
number of cycles possible in a graph which has no cycles of length less than f(n) by a polynomial
in n if and only if f(n)=n—rlog(n) for some r.

1. Introduction

Undirected graphs with no short cycles (called graphs with large girth) have been
the subject of much research over the years. However, digraphs with large girth are
far less studied. It seems that no one has tried to determine how many cycles it is
possible to have in a digraph with no short cycles. Our attention was directed toward
this problem because of the following considerations: in some computer graphics
applications, if the data are stored as a directed graph, certain transformations
could be carried out by processing each cycle in the graph [2]. This is, of course,
not practical in general, since a directed graph on n vertices can have as many as

= n
£ (§)uw-v:

cycles. However, it is often possible to guarantee that the graphs under considera-
tion have no short cycles. We are thus led to make the following definition, and to
ask the following question:

Definition. Let f be any non-negative function on the positive integers. Then we
define C(f, n) to be the largest number of cycles possible in an n-vertex graph with

no cycle of length less than f(n).
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Question. How big must f(n) be for C(f, n) to be bounded by a polynomial in n?

One of our results in this paper is in some respects a negative result, since
we answer the above question by showing that C(f,n) is polynomial only if
f(n)y=n—rlog(n) for some constant r.

We also show that the converse implication holds; i.e., that f(n)=#n —rlog(n) im-
plies that C(f, n) is polynomial. This will be shown to follow from our main result;
if 3k <n, and if a graph has no cycle of length less than n—k, then the graph has
no more than 3* cycles. In addition, we prove that such a graph can have no more
than 2% cycles of length n—k.

In the next section, we give a lower bound for the number of cycles possible in
a graph with no cycles of length less than n — k, for 2k < n. In the following section,
we give an upper bound for cycles of length exactly n—k, if 3k <n. In Section 4,
we build on the result of Section 3 to prove our main result. In the final section,
we give remarks and conclusions.

Note that by cycles we mean elementary cycles (also called simple cycles); i.e., a
cycleis a path from some vertex v back to v in which no vertex other than v is visited
twice. All graphs mentioned will be taken to be directed graphs. Logarithms will be
assumed to be base 2.

2. A lower bound

Theorem 2.1. Let 2k=n. Then there is an n-vertex graph with no cycle of length
less than n—k, which has 3% cycles, of which 2% are of length n— k.

Proof. Given vertices vy, 0y, ..., U,, insert the following edges:
V; D4 for 2k+1=<isn—-1,
V; P Up for 1=<i<k,
Vi Vi in 150 2 Vig 15 Uk i Vi 15 Vg Vi1 for Isisk—1,
Vg ™ Ut 15 U2k V24415 U 701 U 04 if 2k<n,
Ug ™ Vg Uk ™ Vg 15 Vo 77015 U P Vg4 if 2k=n.

Some graphs which result from this construction are shown in Figs. 1 and 2.

It is easy to see that these graphs have no cycle of length less than n—k. To see
that there are 2F cycles of length n— k, consider the k ‘columns’ which have two
vertices in them, and note that we can choose either the top or the bottom vertex
for inclusion in any cycle of length n— k. To get longer cycles, we use the vertical
edges. Thus at each of the k columns, we can either choose to 1) include the top
vertex, 2) include the bottom vertex, or 3) include both; hence we can see that the
graph has 3% cycles. [J
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Fig. 1. n=6, k=3.

1 2 3 4
Fig. 2. n=11, k=4.

Corollary 2.2. If C(f, n) is bounded by a polynomial in n, then f(n)=n—rlog(n) for
some constant r.

Proof. Assume that it is not true for any constant r that f(n)=n—rlog(n). That is,
Vrdn: f(n)<n-—rlog(n).
There are two cases.
Case I: Vrdn: (n=2rlog(mA f(n)<n—rlog(n)).

Let s be any integer, and let 7 =2s. Recall that log(n) =4[ log(n) |. By assumption,
it follows that there exists an n such that

n=2rlog(n)=r[log(n)] =2s[log(n)],
and
f(ny<n—rlog(n)<n—4r[log(n)] =n-s[log(n)].
By Theorem 2.1, there is an n-vertex graph with no cycle shorter than f(n) but which

has 371081 > ;5 cycles. It follows easily that C(f,n) is bounded by no polynomial
in n.

Case 2: HAr Vn: (n=2rlog(n)= f(n)=n—rlog(n)).

Let m be the least integer such that m=2rlog(m). Note that n>m implies that
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n=2rlog(n). Thus for all n=m, f(n)=n—rlog(n)=n—mrlog(n). By choice of m,
we have that n< m implies n < 2r log(n). If there is any n less than m, we also clearly
have m=2. Thus for all n<m, f(n)=0=n(1 —4+m)=n—~minz=n—mrlog(n). Thus
for all n, f(n)=n— mrlog(n). But this is contrary to our assumption that there is no
constant r such that f(n)=n—rlog(n). [

The rest of this paper is devoted to showing that directed graphs with large girth
must look very much like the examples given above if they have as many cycles as
possible. In fact, the only way in which they may differ from those examples is that
the ‘columns’ which have two vertices need not be adjacent. As an example, con-
sider Fig. 3.

3 2

Fig. 3. A 10-vertex graph with girth 10 -3 having 33 cycles, of which 2% are of length 7, which differs
from the graphs constructed in the proof of Theorem 1.

3. A preliminary result

We will denote cycles by lists of vertices. For instance, let V=0,03,...,0,_¢
be a cycle of length n—k. (We may say that V is an (n—k)-cycle.) If V'=
Vi Uit 15 oons Up— ks U1s Uy eevs Uy, WE say that ¥’ is a rotation of V (or we say that we

rotate V to get V’). Note that ¥ and V' represent the same cycle; when counting
cycles, we do not distinguish between rotations of a cycle. We shall also think of
cycles as sets of vertices; for example, we may write v, € V. If vé V, we say that v
is avoided by V.

The next lemma gives some justification for considering cycles as sets of vertices,
since it easily follows from Lemma 3.1 that, given a set of n— Kk vertices, there is
at most one (n— k)-cycle through them.

Lemma 3.1. Let V=0,05,...,0,_; and W=w, wy, ..., w,_ be cycles in a graph in
which no cycle has length less than n—k. If, for any jv;=w,, then for all
i1<i<n-—k, we have that v;e W implies that v;=w;.

Proof. Let v;=w;. Rotate W and V' so that v; =w,. We will show, by induction on
i, that for all positions i, either v;=w;, or v;& W. (The claim is true for i=1.)
Assume the claim holds for j<i, but not for i. Thus we may assume that v; #w;,
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and v; = w;,, for some />0. But then vy, ..., 0,1, Wispseers Wyk is a cycle of length
less than n — k, which is a contradiction. Thus the claim holds for all positions i. L]

Taken informally, Lemma 3.1 says that two (n — k)-cycles can only differ in a few
places. We now wish to generalize Lemma 3.1 in such a way that we can talk about
a larger set of cycles differing in only a few places. To this end, we make the
following

Definition. Let C be any set of (1 — k)-cycles. An arrangement of Cisa |C|X(n—k)
matrix A such that for all i, 4,,,A4;,,...,A;,-risacyclein C, and for every cycle
Vin G, V=A;1, A2 -» A u_i for some i. (In that case, we will say that V'=A4,.)

Lemma 3.2. Let C be a set of (n— k)-cycles in a graph with no cycle of length less
than n— k. If 3k <n, then there exists an arrangement A of C such that Sfor all i and
Ji A=A, , implies that m=n. (L.e., a vertex can appear in at most one column

of A.)

Proof. By induction on |C|.

Basis: |C|=2. Let V and W be two (n— k)-cycles. Since n— k>1n, there is some
vertex in VN W. Rotate ¥ and W so that v;=w,. Now by Lemma 3.1, we have
that the lemma holds in this case.

Induction step: Let |C|=r—1. By the induction hypothesis, there is an arrange-
ment A for C such that for alli and j: A4; ,= A, , implies that m=n. We will show
how to add a row to A to get an arrangement for CU{ ¥}, where V is any (n—k)-
cycle not in C. Since 3k<n, A; and V have some vertex (say A4, ;) in common.
Rotate V, if necessary, and add a row 4, which represents V, such that A,;=4, ;.
By Lemma 3.1, for all / such that A4, ; is in V, A, ;=A,,;. Now let A be any other
cycle in A. Since 3k <n, there is some vertex common to 4, A4,, and A,. Assume
it is A, . By the induction hypothesis applied to 4, 4, ;=A,,. By Lemma 3.1 ap-
plied to A4, and A,, A, ,=A, ;. Thus A4, ,= A, and by Lemma 3.1 A;;=A,,; forall
i such that A, is in V. Thus, we obtain an arrangement for CU{V} satistying the
condition of the Lemma. By induction the result follows. [l

Lemma 3.3. Let A be an arrangement of (n—k)-cycles as in Lemma 3.2. Then if
P={jldn,m: A, +A,,}, then |P|<k. (Le., there are al most k columns which
have more than one vertex.)

Proof. There are k vertices which are not in 4. Each of these vertices can appear
in at most one column of 4, by Lemma 3.2. For all of the other columns, only the
vertex in A; can appear in that column. []

Theorem 3.4. Let 3k<n. If G is a graph with no cycle of length less than n— K, then
G has no more than 2% cycles of length n—k.
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Proof. By Lemmas 3.2 and 3.3, there is an arrangement A of the (n— k)-cycles in
G such that at least n — 2k columns of 4 have only one vertex, and no vertex appears
in more than one column. Let us assume without loss of generality that there is only
one vertex v in the first column of A. It is clear that all (n — k)-cycles in G go through
v, and that any (n— k)-cycle going through v must include one vertex from each
column. Thus, if column j has c; distinct vertices in it, there are clearly no more
than B (n—k)-cycles, where

n—k
B= H Cj
j=1

How big can B be? Consider the k vertices not in A4,. Ignoring the rest of A for
the moment, we can distribute those k vertices in any way we wish. Clearly, we can
achieve this distribution by first placing the k vertices in k different columns, and
then moving the vertices one by one, always moving vertices from columns with two
vertices to columns with =2 vertices. Let B; be the total number of cycles possible
with the vertices arranged as they are after move i By =2k, since there are k
columns with two vertices, and n—2k columns with one vertex. Now consider the
ith move, where we move a vertex from a column with two vertices to a column with
h vertices. Then

h+1

mBi<Bi’

B 1= oY

and max{B,:i=0} = By=2%. Thus, the maximum number of (n—k)-cycles occurs
when each of k columns contains exactly two vertices. [

4. An upper bound

Now we will show how to adapt the proof of Theorem 3.4 to deal with cycles of
arbitrary length (greater than or equal to n—k, if 3k <n). We do this in five stages:

First, we assign a column number to each vertex.

Second, we show that for every edge v—w, either

(1) v is in some column j, and w is in column j+ 1 (mod n — k), (Note: here, and
in the rest of the paper, we use the expression ‘x (mod n— k)’ to mean ‘the unique
integer 7 in the set {1,2,...,n—k} such that x=/ (mod n— k). No confusion should
result from this double use of the notation ‘(modn—k)’.)

(2) v and w are in the same column, or

(3) v is in column j, and w is in column j—r, for some r,1<r<k—1, and the
columns j—r, j—r+1,...,j each have at least two vertices in them. (We will call
edges of this sort Type 3 edges.)

Third, we show that there is a natural ordering which we can place on the vertices.
This ordering has properties which prove useful in later stages.

Fourth, we show that we can maximize the number of cycles only if there are no
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Type 3 edges.
Fifth, we show that we can maximize the number of cycles only if no column has
more than two vertices. At that point, the proof of our main result will be complete.
Before we do any of that, however, let us prove a simple extension of lemma 3.1.

Lemma 4.1. Suppose that 3k <n and that G is a graph which has n vertices and no
cycles of length less than n—k. If V and W are any two cycles, then V and W can
be rotated so that V=0,,Vz,...,0,, W=w,wy, ..., w,, 0, =w,, and for all i and j,
if vi=wy, v;=w, and i<j, then h<l. (l.e., vertices appear in the same order in V
and W; hence for any given set of vertices, there is at most one cycle which goes
through exactly the vertices in that set.)

Proof. First note that since r>1n and s>4n, there is some vertex in both V and
W. Rotate V and W so that v,=w;. Now assume that v;=w,, v;=w, i<j and
h>{. Note that

Ulsees Uie s Wiy ooy Wy 18 @ cycle of length (i-D+(—h+l=s+{i-hM=n—-*k.

Wi, eees Wi 15Uy ..., U, 18 @ cycle of length (I-D+@-H+1=r+(U—-j)=n—k.

Wisewes Wiy Ui 1, -0, 051 18 @ cycle of length h-D+1+(j-D~-G+D+1=
(J-D+th-H=n-k.

Adding, we get r+s=3n—3k>2n. But r+s<2n. L[]

The results in this section deal with counting the number of cycles in a given graph
G. Since those vertices of G which are not in any cycles can be deleted without affec-
ting the number of cycles in the resulting graph, let us assume throughout this sec-
tion that all of the vertices of G appear on cycles. Making this assumption has the
effect of simplifying some of our definitions.

In section three, we proved Theorem 3.4 by showing how each vertex could be
assigned a ‘column number’. In discussions of cycles which may have length greater
than n—k, we will still find it useful to think of arranging vertices into columns.
Given a graph G which has r vertices and no cycle of length less than n — k, for some
constant k< 4n, let an array of G be an assignment of the vertices of G into n—k
columns labelled 1,2, ...,n—k. Let col(v) be the column label of the column con-
taining v, for each vertex in G.

If Z and Z’ are both arrays of G (where col(v) gives the column of vertex v in array
z, and col’(v) gives the column of vertex v in array Z’) and there is some constant
i such that for all vertices v, col(v)=col’(v) + i (mod n - k), then Z'is a rotation of Z.

Given a graph G in which the shortest cycle has length n—k and k<+n, the
following algorithm will create an array Z, which will be used throughout the rest
of this section:

(1) Let A be an arrangement of the (n — k)-cycles in the form guaranteed by lemma
3.2. For every vertex v appearing in column j in A4, set col(v)=/.

(2) phase:=1
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Let P=the set of cycles of G which contain vertices v such that col(v) is not yet
defined.
while P=0
Let X=x,, Xy, ..., X, be a cycle of shortest length in P.
(Let v be a vertex in X such that col(v) has not yet been defined. In the follow-
ing, we will say that X places v. We shall also need to refer to the order in which
vertices are placed. If we say that v is placed in phase q, we shall mean that
v is placed during a pass through the while loop when the variable phase is equal
to g. Phase 0 corresponds to step 1.) Note that more than half of the n vertices
are in X, and more than half of the vertices are in the original arrangement A.
Thus assume without loss of generality that x, is placed in an earlier phase
fori:=1to0 [X]|-1
if x;, is not placed
then col(x;, () :=col(x;)+ 1 (mod n - k)
end for
phase := phase+ 1
P:=P—{W|W isacycle in G and W contains only vertices which have been
placed}
end while
Note that no vertex is assigned to more than one column. Thus there are at least
n —2k>+(n— k) columns which have only one vertex, and hence there must be two
adjacent columns which have only one vertex.
(3) Take the array which results after step 2 and rotate it so that columns 1 and
n — k each have only vertex. The resulting array is Z.
The next few lemmas show why the array Z is useful.

Lemma 4.2. Every cycle contains at least one vertex which appears in a column by
itself.

Proof. A cycle avoids at most k vertices. There are no fewer than n—2k=k +1 ver-
tices appearing in columns with only one vertex. U]

Definition. Let v and w be any two vertices. A direct path from v to w is a path
Xy, X9, ..., X,, where r<n—k, x;=v, x,=w, and the following conditions hold for
i in the range l=si<r—1:

(1) x;—x;, is an edge in G, and

(2) col(x;, P =col(x;)+1 (mod n—k).

Lemma 4.3. Let w be any vertex, and let v be any vertex appearing in a column by
itself. Then there is a direct path from v to w, and there is no shorter path from
vto w.

Proof. By induction on the phase ¢ in which vertex w is placed. (Note that all ver-
tices v which appear alone in a column are placed in phase 0.)
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Basis: w is placed in phase 0. Verification of the basis is left to the reader.

Induction step: Let W=w;, Wy, e, Wi, Wiy 15 eees Wit s Wis p 15005 Wy, Where W
places W, ,...,Ww;,;, vertex w; is placed during an earlier phase and we
{W;.1,...,w;4;}. By Lemma 4.2, W contains some vertex w, which appears in a
column by itself. Note that w, is placed in phase 0. We can assume without loss of
generality that c¢=1. By the induction hypothesis, for every vertex v which ap-
pears in a column by itself, there is a direct path from v to w;, and there is no
shorter path from v to w;. By the algorithm for placing vertices, there is a direct
path from w; to w;,; for 1=j=</. Thus there is a direct path from v to w;,; for
1<j=<I. (In fact, it follows that there is a direct path from v to every vertex in W.)
It remains only to show that there is no shorter path from any such v to any of the
w

i+je
Case 1: W includes a vertex from every column.
In this case v =wy, for some h, and W=w,, Wy 1, ..o, Wy Wity oo Wil s Wig it oo

w,_,. (If k=1, interpret w,_; to be w,.) By the algorithm, since W places w;, ,
1 <j=I, there is no cycle shorter than W which contains w;, ;. Thus there is no
path from wj, to w;, ; which is shorter than (length of Wy, Wy, 1, ..., W) +/, which is
no shorter than (length of a direct path from w, to w;)+j, which is equal to the
length of a direct path from wj, to w;, ;.

Case 2: There is some column m which is avoided by W.

Let Z’ be the rotation of Z in which col’(w,;)= 1. Note that there is a direct path
from w, to w,. (It should be emphasized that we do rzof have that W contains a
direct path from w; to w,.) Since there is an edge from w, to wy, it follows that
there must be a cycle of length col’(w,). Since G has no cycle of length less than
n—k, it follows that col’'(w,)=n—k. Since there is some column m’ which is
avoided by W, it follows that there must be some A, 1l<h=<r-1 such that
col’(w;,)<m’<col’(w,_ ). Note that w,, , is placed in an earlier phase, since if that
were not the case, we would have col’(w,)+ 1=col’(w;, ). But since there is a
direct path from w, to w,, there is a path which is shorter than a direct path from
w, to wy,,,, in contradiction to the induction hypothesis. [l

Corollary 4.4. There is no edge v—w such that col(v) + 1 <col(w).
Proof. Recall that column 1 has only one vertex. Existence of such an edge v—>w
would imply the existence of a path shorter than a direct path from column 1 to

w. O

Corollary 4.5. There is no edge v—w such that col(w) = col(v) —r, r<n—k-2, and
for some i, where 0<i=<r, column col(v)—r-+1 has just one vertex.

Proof. If i #0, existence of such an edge v—w would imply the existence of a path
shorter than a direct path from column col(v) —r+i to w. If i=0, existence of such
an edge v—w would imply the existence of a cycle of length (length of a direct path
from wtov)+1=n—k-1. I
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Corollary 4.6. For any edge v<—w, either
(1) col(v)=Jj and col{w)=j+1 (mod n-k) (v—wis a Type 1 edge),
(2) col(v)=col(w) ' (v—w is a Type 2 edge), or

(3) col(v)=j and col(w)=j—r, for some r, 1<r<k-1, and the columns j—r,
Jj—r+1,...,j each have at least two vertices in them
(v—w is a Type 3 edge).

Proof. This follows from the previous two corollaries, and from the fact that there
are at most k& columns with two or more vertices. [

Lemma 4.7. In any array in which all edges are of Type 1, 2, or 3, every possible
cycle includes vertices from every column.

Proof. First we show that every cycle must include the vertices in columns 1 and
n— k. Assume that some cycle W avoids one or both of columns 1 and n—k. Let
the lowest- and highest-numbered columns visited by W be [ and &, respectively;
thus there is a path in G leading from column # to column /, but avoiding one or
both of columns 1 and n — k. By Corollary 4.6, every column from / to /4 has at least
two vertices. Thus / and % must be in a block of consecutive columns, each of which
has at least two vertices. How many vertices can appear in this block of columns?
Since there are at most k£ columns with two or more vertices, there are at least n — 2k
columns with exactly one vertex each. Thus there are at most n — (n—2k) =2k ver-
tices which appear in columns with other vertices. That is, W is entirely contained
in a block of consecutive columns which consists of at most 2k vertices. Since
2k < n—k, this contradicts our choice of G as having no cycle of length less than
n—k.

Now note that if all edges are of Type 1, 2, or 3, there is no way to move from
left to right except by going one column at a time. The lemma follows. [l

Definition. Let {x,, X,, ..., x,} be the vertex set of G. Define the binary relation <
on {X;,%,,...,X,} in the following way: x;<x; if and only if i#j and

(1) col(x))=1, or

(2) col(x;))#1, and there is a path from x; to x; which avoids column 1, or

(3) col(x,) # 1, there is no path from x; to x; which avoids column 1, and col(x) <
col(x;), or

(4) col(x))#1, there is no path from x; to x; which avoids column 1,
col(x;) = col(x;), and i<,.

Lemma 4.8. < is a total ordering on the vertex set of G such that
(1) If v—=>w is an edge, then either
(1.1) v<w, or
(1.i1) col(v)y=n—k and col(w)=1.
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(2) If col(v)=col(w) + 1, and ail paths from v to w go through column 1, then
w<UD.

(3) If there is a path from v to w which avoids column 1, then v<w.

Proof. By Lemma 4.7, if we delete the edge from the vertex in column n — & to the
vertex in column 1, the resulting graph is a directed acyclic graph G'. We claim that
it is obvious that < is an extension of the partial order corresponding to G’ such
that for any two distinct vertices v and w of G, exactly one of v<w and w<uv holds.
Also, if v—wis an edge, then either col(v)=rn—k and col(w)=1, or v—>w s an edge
of G’ (in which case, v<w). Points (2) and (3) are now obvious. []

Lemma 4.9. Assume that G has as many cycles as any digraph with n vertices and
no cycle of length less than n—k. Then for every pair of vertices v and w, where
v<€w and col(v) + 1=col(w), there is an edge v—=>w.

Proof. Assume v<w, col(v)+ 1 =col(w), and there is no edge v—w. It is easy to
show that adding the edge v— w will increase the number of cycles. Thus the lemma
holds if we can show that we have not altered the fact that no cycle is of length less
than n— k. Note that if we add the edge v—w, either

(1) col(v)+ 1 =col(w) (in which case v—w is a Type 1 edge),
(2) col(v)=col(w) (in which case v—w is a Type 2 edge), or

(3) col(v)>col(w). By the definition of <, if v<w and col(v) > col(w), then there
must be a path from v to w which avoids column 1. Each right-to-left edge on the
path from v to w must be a Type 3 edge. It follows that each of the columns
col(w), col(w) + 1, ..., col(v) has at least two vertices in it

(in which case v—w is a Type 3 edge).

Now it follows from Lemma 4.7 that every cycle must contain a vertex from every
column. Thus every cycle must have length no less than n—k. [

Lemma 4.10. The number of cycles in G is maximum only if there is no edge of Type
3.

Proof. Assume that G has a maximum number of cycles, and that there is a Type
3 edge v—w, where col(v) =, and there is no Type 3 edge from any column greater
than j. We will show how to modify G to get a graph with more cycles.

By Corollary 4.6, column j has r=2 vertices vy, ¥,,...,0, in it, where v; <
vy<---<v,. Thus j&{1,n—k}, since those columns each contain only one vertex.
Note that, since there are no Type 3 edges from any column to the right of column
j, all paths from any vertex u to any vertex x, where col(1) >/ and col(x) </, must
go through column 1. Thus, by Lemma 4.8, if col(u)=/j+1, we have v;<u for
1 <i<r. Since G has as many cycles as possible, we have by Lemma 4.9 that there
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is an edge v,—~u for 1<i=<r. That is, all possible edges exist from column j to
column j+ 1.

Let D be the number of simple paths from column j+ 1 to column n -k, and let
E; be the number of simple paths from column 1 to v;. It follows that the total
number of cycles in G is

DY E.
i=1

Let / be the largest integer for which there is a Type 3 edge v,—w. Note that w was
placed by some cycle W, where, by Lemma 4.7, W contains a path from w through
columns j—1 and j to column n— k. Thus there is some w’ on that path, where
col(w’) =j— 1; similarly, that path contains some v in column J. Since there is a
path from v, to w’ which avoids column 1, it follows by lemma 4.8 that v,<w’; it
also follows that v;<v,. Thus we have that /#r and v,<v;,,. Also note that
w<u,,, since if it were true that v, ;<w, it would follow from Lemma 4.9 that
there is a Type 3 edge v,,;—>w, but there is no such edge by the choice of /.

Let {w;, W, ..., w,} be the set of all vertices of G which come between v, and
‘b7, in the ordering <. That is, let v;XW; W<+ KW <LWy4 . Now by Lemma
4.9, there is an edge v,—w; for 1 =i<s. The discussion in the preceding paragraph
shows that at least one of the w; is in column j—1.

We claim that G’ has more cycles than G, where G’ is obtained from G by

(1) reversing each edge v,—w; in G where col(w)=j-1, and

(2) deleting each edge v,—w; in G where col(w;) #/— 1.

First note that any cycle in G’ which is not in G must contain an edge w;—v, for
some i. However, it is clear that any path from v, to w; in G’ must include column
1. It follows easily that G’ has no cycle of length less than n—k.

Define D’ and E; analogously to D and E; above, so that the number of cycles
in G’ is

D'Y E.
i=1

We claim that it is obvious that D’= D, that E/=E; for 1 i</, and that £/>E.
We also claim that for i >/, E/=E,. To see this, first note that any path in G from
column 1 to v; which avoids v, is also a path in G’, as is any path from column 1
to v; which includes v, but avoids all vertices in the set {wy,...,w;}. Now let
Viseees Vs Uts Why oees Wey Uy -o-, U; DE QDY simple path in G from column ! to v; which
includes v;, where {w,, ..., we} C{wy, ..., w;}, and {vg, ..., v} S {vrs 1, ...,U;}. Note
that col(w,)=j— 1, and thus there is an edge w.—v; in G'. Also note that y,<w,
and col(y,)=j—1 and col(w,)=<j— 1; thus by Lemma 4.9, there is an edge y,~w,

in G, and hence also in G'. But then Y, ..., Y5 Wys ooy We, Ulgs -5 U is a pathin G".
That completes the proof of our claim that E;=E; for i>/.
Thus,

DY E>DY E,
i=1 i=1

i




-
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That is, G’ has more cycles than G, a contradiction. [

Theorem 4.11. Let 3k <n, and let H have no cycle shorter than n—k. Then G has
no more than 3~ cycles.

Proof. By Lemma 4.10, we can assume that G can be arranged in an array Z such
that, for any edge v—w, either

(1) col(v) + 1 =col(w)(mod n— k), or

(2) col(v) = col(w).
We claim that the following are obvious:

(1) Every cycle must go through each column in order from left to right.

(2) Every cycle includes a non-empty subset of the vertices in each column.

(3) If two cycles are different, then there is some column in which they contain
different vertices. (This holds because of Lemma 4.1.)

It follows that, if column / contains ¢; vertices, then there are at most F cycles,
where

n—k
F=11 @“—1).
i=1

As in the proof of Theorem 3.4, we see that we can arrive at any assignement of
vertices to columns by a series of moves, where we start with & columns with two
vertices, and with each move we take a vertex from a column with two vertices and
place it in a column with ~>2 vertices. Let F; denote the greatest number of cycles
possible when the vertices are arranged as after move i. Fj is thus 3%, and

(2h+l__ 1)
Fiov=~zm— b

32" 1)
Thus F;, ;<F;, and max{F;:i=0} =F,=3%

Thus the maximum number of cycles is achieved when each of k columns contains
exactly two vertices. [

Corollary 4.12. C(f,n) is bounded by a polynomial in n if and only if f(n)=
n—rlog(n) for some constant r.

Proof. The only if direction was proved as Corollary 2.2. Thus assume that
f(n)=n—rlog(n). Let g(n) denote n— f(n). Thus g(n)<rlog(n). Let M be such that
3rlog(n)y<n for all n>M.

Let G be any graph with n vertices and no cycle of length less than f(n). If n>M,
then by Theorem 4.11 G has no more than 38 < 3L7 1] < pr106®) cycles. Thus
C(f,n)=nl"°ed1 for almost every n, and hence there is some constant K such that
c(fmy=nlredl g 0
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Note that we have essentially characterized the extremal graphs (i.e., those graphs
having 3* cycles and having no cycle of length less than n— k). It follows easily
from the proofs presented above that the extremal graphs are those graphs presented
in the proof of Theorem 2.1, without the restriction that the columns with two ver-
tices be adjacent. (The details are left to the reader.)

5. Remarks and conclusions
We have as many questions as we have answers. In particular, we have:
Question 1. How many cycles is it possible to have, if 3k=n?

Question 2. Given a random graph G, what is the probability that it has no ‘short’
cycles, or that it has ‘not very many’ cycles?

In answer to Question 1, we conjecture that for 2<4n= k=1nitis impossible to
have more than 3* cycles. We plan to investigate Question 2 at some time in the
future, but have little to say about it now. It is known, for instance, that if a random
graph on n vertices has o(n) edges, the probability that it has any cycles approaches
zero [1, Theorem 3.a). Thus it may be of some interest to know, for instance, if a
random graph on n vertices has f(n) edges, how small f(n) must be in order to make
it likely that a graph has a polynomial number of cycles.

A final note: Carsten Thomassen has also recently investigated digraphs with
large girth; in [3] he gives a structural characterization of digraphs with girth at least
two-thirds n. Using that characterization, he is able to give alternative proofs of the
main results of this paper. He goes on to show that for 2<in=<k<4n it is im-
possible to have more than 2%(n — k)-cycles, and for k>4n>3, it is not possible to
have 2¥(n — k)-cycles.
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