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We show that either

E7(TALLY) = E} (TALLY)

or

E? (TALLY)< E?_ (TALLY}c Ef_(TALLY)< E4_ (TALLY) -,

where E7(TALLY) denotes the class of sets which are equivalent to a tally set
under <7 reductions, Furthermore, the question of whether or not E4(TALLY)}=
E?_(TALLY) is equivalent to the question of whether or not NE predicates can be
solved in deterministic exponential time. The proofs use the techniques of
generaltized Kolmogorov complexity. As corallaries to some of the main results, we
obtain new results about the Kolmogorov complexity of sets in P, © 1950 Academic

Press, Inc

1. INTRODUCTION

A recent paper by Tang and Book (1988} initiated a study of the classes
of sets which are equivalent to tally sets {i.e., subsets of 0%} and sparse sets,
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under varying notions of reducibility. A number of interesting results are
proved in Tang and Book (1988), and many additional questions are posed
and left open. This paper investigates some of these guestions, shows that
they are equivalent to each other, and shows that they are also closely
related to other important open questions in complexity theory.

To motivate this study, and to provide some historical context, let us
first consider P/poly, the class of sets which can be recognized by circuits
of polynomial size. P/poly can be characterized as the class of sets which
are reducible to tally sets via <% or <7, reductions (see, e.g., Schoning,
1985; notions of polynomial-time reducibility such as <% and </, are dis-
cussed in Ladner, Lynch, and Selman, 1975). These observations motivated
a study of the classes of sets which can be reduced to sparse or tally seis
under various notions of reducibility; this research is presented in (Book
and Ko, 1988; Ko, 1988). Among other results, Book and Ko (1988) show
that, for all k, the class of sets <{_,_,-reducible to sparse sets properly
includes the class of sets <% _ -reducible to sparse sets, but that, in con-
trast, every set which is <%, -reducible to a tally set is already <? -reducible
to a tally set.

The class of sets with self-producible circuits, a subclass of P/poty
consisting of sets whose circuits, in a sense, have complexity no greater
than the sets themselves, was studied by Ko (1985) and Hartmanis and
Hemachandra (1988). In Balcazar and Book {1986) this class was shown
to be equal to the class of sets which are equivalent, under </ reductions,
to a tally set. This result of Balcazar and Book {1986) should be compared
to the tesult of Allender and Rubinstein (1988) that K{log, poly | is equal
to the class of sets which are p-isomorphic to a tally set (K{log, poly], the
class of sets containing only strings of “smali” generalized Kolmogorov
complexity, was defined in Balcizar and Book, 1986, to be {L Hk Le
K[klogn, n*]}. For definitions concerning p-isomorphisms, see Berman
and Hartmanis, 1977.}

These results of Balcazar and Book (1986) and Aliender and Rubinstein
(1988) motivated Tang and Book to study sets which are interreducible to
sparse and tally sets under different notions of reducibility. The following
definitions are from Tang and Book {1938).

DeErmITION.  Let <7 denote a class of reductions, such as <7, <7, efc.
Let EP(TALLY) denote the class of all sets L such that, for some set
T<0* T<? L and L<?T. The class EZ{(SPARSE) is defined similarly to
be the class of sets which are interreducible under <7 reductions to some
sparse set.

Using this terminclogy. the two results mentioned above may be
restated:
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1. L has self-producible circuits iff Le £%.(TALLY) (Balcazar and
Book, 1986).

2. K[log, poly]= E?_(TALLY) (Allender and Rubinstein, 1988).

In Tang and Book (1988), it was shown that E7(SPARSE)c

E?_ (SPARSE) and for all k, E7_ (SPARSE)=Ef,_ (SPARSE).
However, the following questions were left open:

1. Is E£{TALLY)=E{_ (TALLY)?
2. Is E2(TALLY)=E{ (TALLY)?
3. Is there some k such that £2_ (TALLY)=Ef, , (TALLY)?

Since the experience of Book and Ko (1988), Ko (1988), and Tang and
Book (1988) had led us to expect that questions of this sort could usually
be resolved using current {i.e., relativizable) techniques, we initially tried to
answer these questions directly. We were somewhat surprised to discover
that relativizable techniques wili not suffice to answer these questions, and
we were even more surprised that these questions, which may seem to be
rather esoteric, are in fact equivalent formulations of basic open questions
in complexity theory.

In this paper, it is shown that the open questions listed above are all
equivalent. In fact, all of these questions are equivalent to the following
statement: every NE predicate is solvable in exponential time.

NE predicates will be defined in Section 3. Intuitively, the question of
whether or not every NE predicate is solvable in exponential time is the
“witness-finding” version of the E= NE question. Although the E=NE
question has received a great deal of attention in the research literature, the
corresponding “witness-finding” question seems to have been ignored until
now. Perhaps this is because the “set-recognition” question of whether or
not P= NP is, in fact, equivalent to the “witness-finding” question of
whether or not every NP predicate is solvable in polynomial time.

This discussion is closely related to a conjecture in (Sewelson, 1983) that
E=NE= E=E"" If Sewelson’s conjecture is true, then the E= NFE ques-
tion is equivalent to the question of whether or not NE predicates are
E-solvable, and thus the questions about <, degrees of tally sets which
are discussed in this paper are all equivalent to E= NE. These connections
are discussed in Sections 3 and 6.

2. PRELIMINARIES

It is expected that the reader will be familiar with basic concepts from
complexity theory, such as Turing machines, circuits, and complexity
classes such as P. NP, etc. For backpground and definitions, see, e.g
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(Hopcroft and Uliman, 1979; Schoning, 1985). We will use £ and NE to
refer to DTIME(29) and NTIME(29""), respectively. £ NP denotes the
class of languages accepted by deterministic exponential-time oracle Turing
machines with an oracle from NP.

For any string x, the length of x is denoted by 1x]. For any set S, 1]
denotes the cardinality of S. All languages considered in this paper are sub-
sets of {0, 1}*. For any language 4, 4 denotes {0, 1}* - 4. We will use a
one-one pairing function computable in polynomial time mapping
{0, 1}*x {0, 1}* onto {0, 1}*, and for inputs x and yin {0, 1}*, we will
denote the output of the pairing function by {x, »». We will also need that
the projection functions {x, y>+ x and {x, p> =y are computable in
polynomial time. We will also assume a standard mapping from {0, 1}*
onto the positive integers; namely the string x will denote the integer whose
binary representation is 1x. Thus, for example, |x]=]log x |, and given
strings x and y, we may say x < y (which corresponds to the lexicographic
ordering on {0, 1}*).

We say that 4<% B if there is a function f computable in polynomial
time, such that for all x, xe A <> f(x)e B. We say that A<}, B if there
is a function f computable in polynomial time, such that, for all x, f{x) is
of the form ¢ f{x) 17, fix)[2], . f(x)[K], 2{x))> where a(x) is a string
of 2% bits specifying a function from {0,1} to {0,1}, and xed <
a(xK Vs, - pi) =1, where y,=1< f(x)[i]€B. {(Intuitively, A<f_, B if
there is polynomial-time routine which can accept 4, given that on each
input it is allowed to formulate k questions {0 ask oracle B.) More formal
definitions are given in Ladner, Lynch, and Selman (1975).

We use the notation f:.4 <% B to say that f is a reduction of type r from
Ato B

A <% _, reduction f is honest if there is some polynomial p such that, for
1<i<k, |xl<p(|f(x)[{]]). We call such a reduction a <2k reduction.
Similarly, honest many—-one reductions are <7, * reductions. Honest reduce-
tions have been considered before in, e.g., Homer (1987) and Joseph and
Young (1985).

Generalized Kolmogorov complexity provides a framework for talking
about the complexity of individual strings. The definitions we use were
introduced in Hartmanis {1983): Given any Turing machine M,, we define
K,[s(n), #{n)] to be the set of all strings x such that, for some string y of
length at most s(lx]), M, prints out x on input y in at most r{jx|) steps.
(Note that complexity is measured in terms of |x!, rather than in terms of
|p].) As was shown in Hartmanis (1983), there is a machine M, (& universal
Turing machine) such that, for all v there exists a constant ¢ such that
K [s(r), tm)] < K, [s(n) + ¢, ct(n) log tin) + ¢]. Dropping the subscript, we
will choose some particular universal Turing machine M, and let
K[ s(n), t{n)] denote K [s{n), t{n)].
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Let L be any subset of Z*. The ranking function for L, denoted r,,
‘s defined as foliows: r,(x)=|{y<x:yeL}l. Ranking functions were
introduced in Goldberg and Sipser (1935},

A set S is said to be P-printable if there is an algorithm which, on input
n, will run in time polynomial in », and will print out the elements of S
which have length at most n. P-printable sets were defined in Hartmanis
and Yesha (1984) and were studied Turther in Allender and Rubinstein
(1988), in connection with Kolmogorov complexity. It was shown in
Aliender and Rubinstein (1988) that a set is a subset of K[zlogn, n'] for
some 7 ifl it js P-isomorphic to a tally set, and that a set is P-printable iff
it is P-isomorphic to a tally set in P. One of the iemmas in this paper
makes use of a more specific fact about K{zlogn, n']; we prove that fact
here.

Turorem 1. For all 122, K{tlogn, n'] is P-isomorphic to 0%,

Proof. Note first that there is some Turing machine M, such that
0* = K, [log n, 2rn]. Thus 0™ e K[2log n, n*7 for all large m, and hence, for
all 132, the number of strings in K{tlogn, '] which lexicographically
precede 1™ cannot be much less than m. (It is at least m—k for some
constant & which does not depend on m.) Since K[7logn, n'] 1s clearly a
P-printable set, it thus suffices to show that, if S is any P-printable set that
is not overly sparse, then S is P-isomorphic to 0* We will show that if S
is a P-printable set such that, for some c, (rs{1")+c>n, then S is
P-isomorphic to 0%,

Let S be any such set. Let 7= § and let L = X* —0*. As was pointed out
in Goldberg and Sipser (1985}, rg, 1, and r, are all computable in poly-
nomial time, and they all have inverses computable in time polynomial in
the length of their output. Let f be defined as follows: f(x)=0""if xe §,
and f(x)=r (ry{x))if x¢ S. Some straightforward calculations verify that
£ is a P-isomorphism mapping S onto o+ 1

3. NE PREDICATES

The notion of NP-completeness has been extremely useful in characteriz-
ing the complexity of many optimization problems. One key to this success
is the fact that the recognition problem for NP-complete sets is equivalent
to the problem of constructing a solution to an instance of the correspond-
ing optimization problem.

Somewhat surprisingly, it is not known if the same situation holds for
nondeterministic exponential time. The following definitions and results
help to make this precise.
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Let M be a nondeterministic Turing machine such that every configura-
tion of M has at most two possible successor states. An accepting computa-
rion for a string x on M {or a witness for x on M ) is a binary string encod-
ing the sequence of nondeterministic moves of M on input x along some
computation path leading to an accepting configuration. That is, if y is a
string encoding a sequence of moves of M, then the ith bit of » will be
1 (0) iff the ith move in the sequence which involves a nondeterministic
choice is resolved in favor of the higher (lower) numbered state.

DEFINITION. An NE predicate is a binary predicate R such that, for
some nondeterministic Turing machine A which runs in time 2007,
R(x, y)<= y is an accepting computation for x on M. An NE predicate R
is E-solvable if there is some function f computable in time 27 for some ¢
such that, for all x 3y R(x, y)< Rix, f{x)). (Note that the running time of
the NE machine M is exponential in |x|, but may be linear in 1y| (this will
be the case if M makes many moves which involve nondeterministic
choice.) Thus it seems quite possible that there exists an NE predicate R
such that R(x, y) is decidable in time linear in |{x, ¥>!, and yet R is not
E-solvable (i.e., not solvable in time exponential in [x}).)

Thus R is E-solvable if there is an exponential-time routine which, for all
x, can find a witness for x if one exists. One can in a similar way consider
“NP predicates” and “P-solvability™; it is well known that P = NP iff every
NP predicate is P-solvable.

1t is natural to wonder if every NE predicate is E-solvable iff E= NE.
This question is closely related to the conjecture of (Sewelson, 1983) that
E=NE=E=E" as the following proposition shows:

PROPOSITION 2. E = E"? = everv NE predicate is E-solvable = E= NE.

Proof. It is immediate from the preceding discussion that if every NE
predicate is E-sclvable, then £= NE. Thus it suffices to show that E=E"*
implies every NE predicate is E-solvable. Let R be an NE predicate defined
by a nondeterministic Turing machine rupnming in  time 2. Let
L= {0, w): for some x of length at most i*, R(i,wx)}. L is in NP. An
exponential-time machine with an oracle for L can recognize the set
L'={{i, j>: the jth bit of the Jexicographically least witness for 7 is 1}. By
assumption, L' is in E. It now follows easily that R is E-solvable. (Related
observations were made by Sewelson herself; see Sewelson, 1983, p. 43.) |

Thus if Sewelson’s conjecture is true, then all of these conditions are
equivalent, and the results about <7, degrees of tally sets which are
proved in this paper turn out to ali be equivalent to E= NE
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There is also a close relationship between the E-solvability of NE
predicates and the question of whether or not every infinite set in P has an
infinite P-printable subset. This latter question has been considered
recently in {Allender, 1989; Allender and Rubinstein, 1988). In order to
formulate this relationship, it is necessary to introduce certain notions of
immunity,

An infinite set S is said to be immune to a class of sets ¥ if S has no
infinite subset in %. (Immunity has been widely studied in complexity
theory and recusive function theory, eg. Rogers, 1967; Balcazar and
Schéning, 1985.) Now we wish to extend the notion of immunity to cover
predicates as well.

DeFINTTION.  An NE predicate R is said to be E-immune if (1) the set
{x:3yR(x, y)} is infinite, and (2) for all computable in exponential time,
the set {x: R(x, f{x))} is finite.

Tt is also necessary to define a function len: 2*” — 2" such that, for any
language L, len(L)= {n: there is a string of length » in L}.

PROPOSITION 3. 1. For every infinite set L P there is an infinite
P-printable 8§ < L. <> No NE predicate is E-immune.

2. For every infinite set Le P there is an infinite P-printable S L
such that len(S) = len(L) <> every NE predicate is E-solvable.

Proof. Part2 is proved as part of Theorem 4. The proof of part 1 is
very similar to that of part 2. |

Note that if L is in P, then L~ K[k log n, n*7] is a P-printable subset of
L. Since it seems unlikely that every NE predicate is E-solvable (since that
would imply that E= NE), the preceding proposition tells us that there are
probably sets in P which, for infinitely many lengths, contain only “com-
plex” strings. More precisely, there probabiy exist sets L in P such that, for
all k, len(L ~ K[k log n, n*]) #1len(L).

Note that if P= NP, then E=E"" and hence every NE predicate is £
solvable, and thus every set in P has “simple” strings of every length. This
is somewhat surprising, since P = NP implies that sets such as K[#/2, n*]
are in P. K[#/2, n*], in some sense, contains only complex strings; yet if
P=NP it also contains infinitely many “simple” strings, ie., strings in
K[tlogn, n'] for some 1.

In the proofs of the main results of this paper, we actually will make use
of different statements which are equivalent to the statement that all NE
predicates are E-solvable. The following result deals with all of the equiva-
lent restatements of which we make use in this paper.
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THEOREM 4. The following are equivalent:

1. Every NE predicate is E-solvable.

2. Every honest function f: XZ* - Q% computable in polynomial time is
weakly invertible (ie., there is a function g computable in polynomial time
such that f{g(x))=x for all x<image(f)).

1. For all honest polynomial-lime compulable f such that for some 1,
image(f) < K{¢logn, n'], there exists an r such that for all x € image(f),
fUx)n Klrlogn n']# .

4. For all length-increasing f: Z* — 0% computable in polynomial time,
there exists a t such for all x &image(f), 7Y x)yn K[tlogn, n'] # &

5 YLeP3ScL such that S is P-printable and len(S}=1len{L).

Proof. (1=2) Let f12%*—0%* be an honest function computable in
polynomial time. Since [ is assumed to be homest, there is a constant &
such that Vi, [3x f(x)=0=3x (jx| <’ and f(x)=07)]. Let R be the NE
predicate  R(i, x)<> f(x)=0" and |x| <i¥ Assuming that every NE
predicate is E-solvable, it follows that there is a function & computable
in time 2 for some c such that JyR(i, y) < R{i, (D). Thus f can be
inverted on 0* in time »° using the following algorithm: on input ',
compute h{i}

(2=>3) lLet fand 7 be such that j is honest and computable in polyno-
mial time and /> X* — K[rlogn,n']. By Allender and Rubinstein (1938),
there is some P-isomorphism g mapping the image of / onto some tally set.
Since gof: Z*-» 0% is honest, by assumption, there is some function h
computable in polynomial time such that g(f(A(x)))=x for all x in the
image of gof. That is, for all yeimage(f), h(g(x))e f~'(x), and for all
such x, g{x)e0%, and thus there is some r such that, for all xeimage(f)
Wg(xVef "x)nK{rlognn']

{(3=+4) Immediate.

{4=5) Let LeP. Let flx)y=0*""""il xe L, and flx)y=0*""if x¢ L.
By assumption, there exists a ! such that for all xeimage(f), f'{x)n
K[tiogn n']# . Let S={xeK[tlogn,n']: {f(x) is odd}. Then S L,
S is P-printable, and len(S} = len{L).

(5=-1) Let R be an NE predicate defined by a nondeterministic Turing
machine which rups in time 2. Let L= {071y10/:{1p10/[==i+2 and
R(i,y)}. L is in P. Let S be a P-printable subset of L such that
len(S)=1len(L). Then the following routine can be executed in exponential
time, and on input / it will return a string v such that R{, y} if any such
y exists: On input J, print the elements of S of size at most i+ 2+ If any
element in the list has length i“+ 2+, it is of the form 071310/ for some
y and j such that R(i, ). Output 3. |
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4. SoME BasiC LEMMAS

In this section, we present characterizations of sets which are equivalent
to tally sets under honest reductions. These characterizations play a central
role in the proofs of the main results. Each characterization has essentially
the same flavor; namely, if a set is in the same degree as a tally set, then
the set is reducible to itself, via reductions which query only strings of low
Kolmogorov complexity.

LemMMa 5. 1. AeEr" (TALLY)=31 A<y AnK{tlogn,n']
2. AeE2NTALLY)<> 3t A< A K{tlogn, n']
3, A<t AnK[tlogn n'}=AcE}" (TALLY)
4 AeED’ (TALLY)=3t1 A<k AnK[rlogn n'].

Proof. We will prove 3 and 4; these clearly imply 1 and 2.

3. Suppose A<2” AnK[tlognn']. Let g be a P-isomorphism
between K[7logn,n'] and 0% (Such an isomorphism exists, by
Theorem 1.) Let T be g(A ~ K[t logn, n']). Clearly, A<t T. Also, it 1s
easy to see that T<?%” A, using the following procedure: on input x, reject
if x¢ 0%, and otherwise accept iff g~ '(x)e 4. Thus A e E2* (FTALLY).

4. Let A= E?” (TALLY). Thus there exists some tally set T and
some reductions f and g such that fiA<?” T and g T<o" A Note
that, since g is honest and runs in polynomial time, all queries made by g
on inputs from 0* are in K[t logn, n'] for some . Thus g<f is a éi;’i”
reduction from A to AnK[tlogn,n'}. §

Lemma 5 says nothing about <%’ reductions. We would like to say
something like “d e EMTALLY) = 3t A <5, E A K[tlogn, n']” Indeed,
the forward implication does hold. Unfortunately, however, the converse is
false. (Proof. Let T be a tally set, and let f: T<2" 4. Then f(1*) is an
infinite subset of 4. Thus for any set 4 E%*(TALLY), A has an infinite
P-printable subset. On the other hand. let B be any P-immune tally set,
and let A= {x:0"¢ B}. Clearly, A<%" 4 K[2logn, n*], but 4 has no
infinite P-printable subset.)

However, something like Lemma 5 does hold for sets A of the form
Bx0*

LemMa 6. Let A be any set of the form Bx 0* for some set B. Then

A€ EPP(TALLY)<>31 A<%" A K[tlogn, n'].

”

Proaf. The proof of the forward direction is like part 4 of Lemma 5. We
prove the reverse direction.
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Let A be of the form Bx0*, and let A <7 AnK[rlogn, n']. Let g be
a P-isomorphism between K[7logn,n'] and 0* (Such an isomorphism
exists, by Theorem 1.} Let 7 be g4~ K[zlogn,n']). Clearly, 4 PR T
Also, the function

g (%) if xe0*
X .
Cx, TR otherwise

is a <”" reduction from T to 4. Thus 4€ EL,"(TALLY). 1|

e

It is natural to wonder if part4 of Lemma5 can be improved, by
replacing the “k*” with a “£.” We conjecture that no such improvement
is possible. In fact, we are able to prove that no such improvement is
possible for a restricted class of truth-table reductions, which we shall cali
parity reductions. The proofs of our main results make frequent use of the
properties of parity reductions.

DerINiTiON. A <7, reduction g will be called a parity reduction if, for
all xeK[3logn '], glx)= {x, 1), where ¢ is a string of 2% bits denoting
the identity function, and for all x¢ K[3log n,n’], g{x) is of the form
Cg(x) 17, glx)[2], . g(x)[K], ©), where [g(x)[i]| > |x| and g(x)li]e
K[3logn,n’] forall i, 1<i<k, and © is a string of 2% bits denoting the
function that takes the value 1 iflf an even number of the strings in the set
lgtx)[i]:1<i<k} are m the oracle set. (There is no special significance
to the number 3 in this definition. It is sufficient to choose any 1 such that
o*1*< K[rlogn, 1n'].)

Clearly, parity reductions are a very technical notion. However, these
reductions have some special properties which enable certain of our proofs
to go through. The following lemma should be compared to parts 3 and 4
of Lemma 5.

LemMa 7. If A<D, AnK[3logn, n*] via a parity reduction, then
AeEf* (TALLY).

Proof. The general idea of this lemma is that if 4 1s <% _ reducible to
itself via a parity reduction, then 4 is <% /', reducible to a set of k-tuples
of strings of low generalized Koimogorov complexity. Also, the set of
k-tuples is <% ", reducible to 4. That is, a parity <f: reduction can, in
some sense, be decomposed into two <{_, reductions.

Let g: A<, AnK[3logn, n’], where g is a parity <iz_, reduction
computabie in time g{r) for some polynomial g.

Let §={{x,, X3, ., x,0: for all i, x,eK[3logn, n’] and g(|x;)=
[<X|, X2, 0 X o], and the set {x, x4 ! has an odd number of elements .
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Clearly § is <%! reducible to 4. We need to show that A is <’
reducible to S.
Let /# be the <£", reduction given by

<<X, Xy vy X>, l>,
o) = if glx)=<x)
<<x1 [T xk>! <x}c+1: ey x2k>> sasy <X(k-1)k+11 wees xk2>: e >5

i glx)=<{xq, . X2, ©).

It is easy to verify that A: A <%”  S. Also, note that S consists only of
strings of low Kolmogorov complexity, since any element {x,, Xa, ., Xz
of § can be constructed from the descriptions of the x,. Since the x, are all
in K[3logn,n’], it is not hard to see that for some constant ¢, S is a
subset of K[6k logn+ ¢, cn®logn+c]. It now follows from Allender and
Rubinstein (1988) that § is P-isomorphic to a tally set. Thus
Ae E2" (TALLY). 1

— it

The lemmas presented so far in this section have dealt with honest
reductions. The next lemma provides a bridge between degrees of honest
reductions and degrees of unrestricted reductions.

LEMMA 8. For any class of reduction < e { <2, <4, <5_ . €5 _ 5}
and any set A, Ae EP(TALLY)< Ax0*e E#"(TALLY).

Proof. We prove the result in the case of many-one reductions. The
proof in the case of <% _, reductions is similar.

{=) Assume A€ E?7(TALLY). That is, there is a tally set T and there
are <7 reductions [: A<’ T, and g:T<”? A. Assume without loss of
generality that the pairing function is such that {7, 0%} < 0% so that
Tx0% is a tally set. Let f(<{x, y)>)=<{f(x),01¢<=¥% if yeO* and
F(Cxy pd)= <1 101 F p@ 0% Let g'((x, )= {glx), 07715 if
ye0*, and g {<{x, yy)= {1,121 if p¢0* Tt is easy to verify that
[ AX0* <P Tx 0% and g Tx0* <2 A x 0%

(<) Assume Ax0%e EZ*{TALLY). That is, there is a tally set 7 and
there are <7’ reductions fiAx0*<2* 7T, and g:T<i” Ax0* Let
F(x)=f{{x.0>), and define g'(x} to be equal to y if g{x})= {y, 0> for
some 7, and g'{x) =z for some fixed string z¢ A4, if g{x)¢ 2% x 0% Tt is easy
to verify that /"1 A<% T, and g1 T<? A |

COROLLARY 9. If, for all A,
AP AnK[tlogn n']=3r A<E " AnK[rlogn, n'],

then E% (TALLY)= EZ(TALLY).
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Proof. Let Ae E2 (TALLY). By Lemma 8, 4 x0%e EZ" (TALLY) for
some k. By Lemma 5, 4 x 0*<%" , Ax0* n K[tlogn, n'] for some . By
assumption 4 x0* sf};h Ax0*~K[rlogn, »n"] for some r. By Lemma 6,
Ax0*e ER(TALLY), and by Lemma 8§, 4 € E? (TALLY). 1}

COROLLARY 10. If there exists a set A such that AP An
K[3logn,n')] and

¥t Ax0* 5" Ax0* A K[1logn, n']

then E? (TALLY)< E%_ {TALLY).

Proof, Let A be such that 4<4" AnK[3logn, #°] and
Vi Ax0F £7 Ax0* nK[tlogn, n'].

m

By Lemma 5, A€ £, (TALLY). By Lemma 6, 4 x 0*¢ EX"(TALLY). By
Lemma &, A¢ E2(TALLY). |

COROLLARY 1. If for all I there exists a set A such that A is reducible
to A~ K[3logn, n’) via a parity €, _,, reduction and

Vi, Ax 0% 7% 4x0*~ K[tlogn, n']
then for all k, Ef _ (TALLY)< Ef (TALLY).

k+1—11
Proof. let k be given. By assumption there is a set A4 such that
A< oo AnK[3logn, n’] via a parity <, z_, Teduction, and

Vi, Ax 0% £50 Ax0*~K[rlogn, n'].

R

ByLemma7,A¢ EZ,, ATALLY) By Lemma5, 4 x0%¢ E? " (TALLY),
since k2 < (k+1)’— 1. By Lemma 8, 4¢ E}_ (TALLY). 1§

The corollaries suggest how the proofs will be structured. We will show
that if every NE predicate is E-solvable, then the hypothesis of Coroliary ¢
is satisfied, and we will show that if not all NE predicates are E-solvable,
then the hypotheses of Corollaries 10 and 11 are satisfied.

5. Mamn RESULTS
THEOREM 12. If all NE predicates are E-solvable, then Ef (TALLY)=
EP(TALLY).

Proof. By Corollary 9, it suffices to show that if all NE predicates are
E-solvable, then for all sets A,

I, A<t AnK{tlogn, ' =3r, A< A Klrlogn, n'].




172 ALLENDER AND WATANABE

Assume that all NE predicates are E-solvable, and let [ TAKEE AN
K{tlogn,n'].

Recall that, for all x, f{x) is of the form {f{x)[1], fix)[2],
f(x)[k], a(x)), where ofx) is a string of length 2%. Without loss of
generality, we may assume that there is some u such that forall i, f(x)Li]e
K[ulog n, n*]. (We can do this since, if f(x){i]¢ K[7logn. n'], the value
of “f{x)[ileAnK[tlogn, n']" is 0. We can easily find a string z in
K[ulogn, n*]— K[ tlogn, n'] and set f(x)[i] to z. Using this replacement,
the truth value of f(x) remains unchanged.)

Since all of the f(x)[i] are of low Kolmogorov complexity, and since
#(x) has bounded length, it follows that for some v, the range of f is con-
tained in K[vlogn, n*]. Since it is assumed that all NE predicates are
E-solvable, it is thus the case by Theorem 4 that there exists some r such
that for all x there is a ye K[rlog n, #n"] such that f{x)= f(y). The routine
that, on input x, searches through K[rlogn, »'] until it finds such a y, and
then outputs y, is a <%* reduction from A to An K[rloga,n"]. 1

The proof of Theorem 12 is not hard; it is more difficult to prove the
separation results.

Fach of the separation results involves constructing a set A with certain
properties. As is usual in such constructions, these sets will be built in
“stages.” In order to explain how we construct these sets, some discussion
IS necessary.

Let g be any parity <%_, reduction, and let S be any subset of
K[3logn n*]. Notice that there is a (unique) set 4 such that
AnK[3logn n*]=S and g: A<y _, AnK[3logn,n’]. That is, for any
string ¥, the reduction g applied to y asks questions only about elements
of K[3logn, n*]. Put y into A iff the reduction g says to accept y, using
oracle S. That is, any subset of K[3 logn, n*7] gives rise to some set which
reduces to itself via g, and membership in any such set is entirely deter-
mined by the membership of strings of low Kolmogorov complexity. Thus
we will build our set 4 by specifying membership in A for certain strings
of low Kolmogorov complexity. The next paragraph makes this more
precise.

At the start of each stage s there will be a function 4,_,:
K[3logn,n*} — {0, 1,7} such that A,_;(x)=7? for all but finitely many x.
During stage s we will build a function 4, which is a finite extension of
A,_, {ie, Afx)=4,_,(x) for all x, except for finitely many x such that
A, (x)="7). Let us say that a set 4 is consistent withd, ifgA<? AN
K[3logn n*], and A{x)# ?=-(A4,(x)=1<>xeA)}. The functions 4, will
be constructed so that there is at least one set 4 such that, for all s, 4 15
consistent with 4,. Any set which is consistent with all of the functions A,
will be a witness for the separation result.
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During the course of the construction, there will be many strings
y¢ K[3logn, n*] such that, for some stage s, A(gniD#? for all j,
1< j<k. For any such string y, it follows that membership of y in A4 is
determined by A, for any set 4 which is consistent with 4,. Thus we shall
sometimes say that 4, guarantees that such a string v is in A or is not in
A.

We are now ready to prove the first separation result.

TuroreM 13. If not all NE predicates are E-solvable, then EZ{TALLY)
c E?_ {TALLY)

Proof. As suggested by Corollary 10, the strategy will be to show that,
if not all NE predicates are E-solvable, then there exists a set A4 such that
A<k, A~ K[3,logn n’] and

Vi, Ax0* €25 Ax0* ~ K[tlogn,n'].

Recall from part 4 of Theorem 4, that if not all NE predicates are
E-solvable, then there is some iength-increasing /1 2 * — ()* computable in
polynomial time such that for all ¢ there exist infinitely many x € image(f)
such that f~'{x)n K[tlogn, rn']=2.

The <?_,, reduction from 4 to 4N K{3 log n, n*] will be given by the
function g defined by

f(x) ), il xé K[3logn,n'l;
g(x)={

{x, 10, otherwise.

Clearly, g is a parity <7 _, reduction. {Notice that if g(x)= {f(x), ©,
then xe d < f(x)¢ 4.)

Let fi, fa, .. be an enumeration of < reductions, and let p; be a poly-
nomial bounding the running time of a machine computing f,. Let g be a
polynomial such that f is computable in time bounded by g.

We will build A in stages. At stage s= {/, 1) we will guarantee that f; is
not a <%, reduction of 4 x 0% to 4x 0¥~ K[tlogn,n']

Initially, set Ay(x) =" for all x.

At stage s = {i, 1 », choose r so that, for all 3, if (3, 0">eK[tlogn,n'}
and m<p,(2q(y])), then veK[rlogn,n]. Choose x s0 that
A, (f(x)y="7and F N Klrlogn, 0] = . (This is possible since
A,_, is only defined on finitely many strings.)

The construction of A, now proceeds according to one of two cases,
depending on the value of Fi{x, 03).

Case 1. Either f{<{x,0>)¢ K[tlogn, n'] or fi{{x,0)) is not of the
form ¢y, 07>, In this case, set A (fix})=0. This guarantees that xe A4,
and thus {x, 0> e 4 x 0% but fildx,0>)¢ 4 x0*~ K[tlogn,n'].
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Case 2. [{(<{x,0>)eK[tlogn, n'] and f,({x,03)={p 0™ for some y
and some m<p,(1<x, 0)]). This case has three subcases, according to
Whethef AJ* l(y) =01 Asw—l(y)= 15 o1 As—- 1()’) = ‘?

Case 2a. A,_,(y)=0. In this case set A (f(x))=0. This guarantees
that xe A, and thus (x, 0> e 4 x 0% but f{{x,03)=<{» 0"5¢ Ax0*n
Kirlogn,n'l

Case 2b. A,_,(y)=1. In this case set A,(f{x))=1 This guarantees
that x ¢ A, and thus {x, 0> ¢ 4 x 0%, but Fi({x,00)=<(p,0"reAx0*n
Klttogn,n').

Case 2¢. A, _,(y)=" This case has two subcases, depending on
whether or not ye K[3logn, n’].

Case 2ci.  1f ye K[3logn, n*], then set 4 (y)=1and A(f(x})=1.
(Note that this is possible even if f(x)=y.) This guarantees that
x¢A and thus (x,0>¢4x0% but fi{{x,0))=1{p e A x 0¥
K[tlogn,n'].

Case 2cii. 1f y¢K[3logn, n*], then note that f{y)# f(x). This is
because if f(v)=f(x), then y¢K[rlogn n"] (by choice of x). Also,
g(i¥) = 1 f(x) = 1x], and thus m<p,(|<x 00 <pi(2 |x[) < pi{2q(1¥1)).
Thus <y, 0™ ¢ K[1logn, n'] (by choice of r), contrary to assumption.

Thus we may set A(f(x))=1 and A,(f{y))=0. This guarantees that

xé A and ye A. Thus (x,0) ¢ A4 x0%, but fi({x, 00)= {p, 0" e Ax0*n
K[tlogn,n'] |

Turorem 14. If not all NE predicates are E-solvable, then for all k,
Ei_,,(TALLY)C:Eiﬂ_”(TALLY}.

Proof. By Corollary 11, it suffices to show that if not all NE predicates
are E-solvable, then for all k, 34 such that A<f},_, AnK[3logn ']
via a parity <%, ,_,, reduction, and

Vi, AxQ* g2t Ax0*nK[tlogn, n'].

Recall that, if not all NE predicates are E-solvable, then there is some
length-increasing f: Z* - 0* computable in polynomial time such that
for all ¢ there exist infinitely many xeimage(f) such that FHxn
Kltlogn, n']l= .

The <%, ,_, reduction from A to A~ K[3 logn, 7% will be given by the
function g defined by

Cf(x), F, flxp, o fix)15, 89, if x¢K[3logn, n’l;

{x, 1), otherwise.

g(X)={

Clearly, g is a parity €%, ., reduction.
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We will build 4 in stages. At stage 5= (i, ty we will guarantee that f;1s
not a <f_,, reduction of 4 % 0% to Ax0* A K[1logn,n'], where fis Lo
is an enumeration of <% _,, reductions. Let p; be a polynomial bounding
the running time of a machine computing f;. Let g be a polynomial such
that f is computable in time bhounded by ¢.

Initially, set Ag(x)="7 for all x.

At stage s= (i, 1), choose r so that, for all z, it <z,0m>eK[tlogn, n']
and m < p,(2g(iz))), then z € K{rlog n, n"]. Choose x so that A, (f(x))=
A, (f())= - =4, ,(f(x)1F)=7 and FYfx)nKLrlogn, n']

Our goal now is to determine membership in A x 0* for {x, 0> and for
all of the strings queried by fA<x, 05) in such a way that {(x,0>¢€
A x 0% < f,({x,0)) evaluates to false with oracle 4 x0* nK[tlogn, n'].

Without loss of generality, we can assume that f;(¢x,0)) is of the form

<<y1,0m;>, <J’210mz>s ] <yk30mk>a a>:

for some ¥, Va. - Yio s = M where « is a string of length 2% denoting
some function from {0, 1}* to {0, 1}.

Let Z={z,, 22, a2y} = {31 1 <j<kand 4, 4(¥;)="7and (¥, 0"y e
K[tlogn, n'1}. Notice that if we construct 4, in such a way that it deter-
mines whether ze A for each z€ Z, then we will have determined the truth
value of f,(x} when the oracle is A% 0* ~K[tlogn, n'], where 4 is any set
consistent with 4.

Notice that, for all ze Z, f{z)# f(x). This is because if f(z) = f(x), then
z¢ K[{rlogn,n'] (by choice of x). Also, g1z} = LF(x) = x| Let m be the
integer such that, for some j, fi(<x,00)Li}= ¢z,0™>. Then we have
m < p(1<x, 001 < py(2 1x1) € pi2q(12])). Thus <z, 0" ¢ K[1logn, n'] (by
choice of r), which contradicts the fact that <z, 0"> e K[tlogn,n'] (since
zeZ).

Notice also that there is some 4, 0 <h<k such that f{x)17¢ {z, . 2}
(There are k+1 choices for A, but there are only I<kz's) Fix h Also,
since range(/)c 0% and since fix)# flz) for all zeZ, it follows that
fix)1"¢ {z, f(2), f(2}1, .. f{z)1%} for all ze Z.

We are now ready to define A, Let Y= {f(x)l/1j#h}u
(Z~K[3logn, n* Dy { /=), Az o f(2)1F 2 Z—K[3 jogn,n*1}. Set
A(p)=1 for all ye¥; the construction of 4, will be complete once an
assignment is made for £{x)1" (It is important o note, using the observa-
tions in the preceding paragraphs, that f(x)1"is not in ¥, and thus we are
still free to set 4.(f(x)1") o 0 or to L)

Notice that A4, already determines membership in A4 for all strings z€ Z.
Thus there is some be {0, 1} such that the truth value of f;(x)=2#& when
the oracle is A4 x 0%~ K[ logn, n'], where 4 is any set consistent with A4
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Now set the value of 4 (f(x)1") so that the number of elements in the set
{jrAf(x)1)=1} is even iff b=0.

This guarantees that (x,0 e A x0* e xed<|{j: 4,(f(x)1V)=1}]1is
even<>b=0< f,({x,0)) evaluates to false with oracle Ax0%*n
K[tlogn,n']. 1§

6. CONCLUSIONS AND QUESTIONS

We have defined NE predicates and considered the question of whether
or not all NE predicates are solvable in exponential time. This question has
natural interpretations in terms of one-way functions, and in terms of the
Kolmogorov complexity of sets in P. If P = NP, then every NE predicate
is E-solvable, whereas if E # NE, then not all NE predicates are E-solvable.
Furthermore,

Every NE predicate is NE-solvable
= E7(TALLY)=E?_ (TALLY)= .-- = E} (TALLY)

1 -1
and

Not all NE predicates are E-solvable = E7(TALLY)
< E? (TALLY)<= E%_ (TALLY)c E§_,(TALLY)
c Ef_ (TALLY)< --- < Ef (TALLY).

Since there are oracles relative to which P= NP and oracles relative
to which E= NE, it follows that the question of whether or not
Ef(TALLY)=E® {TALLY) cannot be resolved by any proof technique
which relativizes.

The literature in complexity theory is rich in “hierarchies;” often the
hierarchies which are of greatest interest are those which are not known to
be infinite, such as the polynomial hierarchy and the Boolean hierarchy.
The Boolean hierarchy is especially interesting in relation to the work
reported here, since it can be defined in terms of bounded truth-table
reductions {Cai et al, I988). There are oracles relative to which the
Boolean hierarchy is infinite, and oracles relative to which it collapses at
any given level (Cai et al,, 1988). Similar results are known for the polyno-
mial hierarchy (Ko, 1989). The hierarchy considered here, on the other
hand, is either infinite, or else it collapses to its lowest level. Such “all or
nothing” results are rare in complexity theory.

We believe that the proof technique used in this paper is also interesting.
It seems that it would be difficult to devise proofs for these results without
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having the machinery of generalized Kolmogorov complexity available to
guide the process of lemma formulation.

We mention in closing some other interesting open problems from (Tang
and Book, 1988) regarding the classes of sets which are equivalent to
sparse and tally sets:

Is EZ(SPARSE) = P/poly?
2. 1s E*(SPARSE} = EZ(SPARSE)?
3. Is EZ(TALLY)< E%(SPARSE)?

[y

The most interesting of these is, without doubt, the question of whether or
not EZ(SPARSE)= P/poly. That is, assuming only that L is reducible to
a sparse set, can one conclude that L is, in fact, equivalent to some sparse
set? Does every set with small circuits have circuits which are of “low
relative complexity” in this sense?

Finally, recall that, if the conjecture of (Sewelson, 1983} that
E= NE= E=E"” is true, then the conditions considered in this paper are
equivalent to £=NE. A number of other questions concerning conditions
related to the E= NE problem seem quite interesting. For instance, it i3
relevant to ask if

E = NE = Every infinite set in P has an infinite P-printable subset.

In light of Proposition 3, this is equivalent to asking if N = NE implies that
no infinite NE predicate is E-immune. There are reports of recent progress
on questions of this sort and on relativizations related to Sewelson’s conjec-
ture (Impagliazzo and Tardos, 1989).
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