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Abstract

We investigate the complexity of languages that correspond to algebraic real num-
bers, and we present improved upper bounds on the complexity of these languages.
Our key technical contribution is the presentation of improved uniform TC0 circuits
for division, matrix powering, and related problems, where the improvement is in terms
of “majority depth” (initially studied by Maciel and Thérien). As a corollary, we obtain
improved bounds on the complexity of certain problems involving arithmetic circuits,
which are known to lie in the counting hierarchy, and we answer a question posed by
Yap.

1 Introduction

In this article, we consider formal languages that are subsets of {0, 1}∗ = {s0, s1, . . .} (where
s0 = λ (the empty string), s1 = 0, s2 = 1, s3 = 00 etc. in the standard order on {0, 1}∗, where
short strings precede long strings, and strings of the same length are placed in lexicographic
order. Any such language A can be identified with its characteristic sequence χA = b0b1b2 . . .

1Preliminary versions of this material appeared in [ABD14] and [DP12].
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where bi = 1 if si ∈ A and bi = 0 otherwise. The sequence χA is also the binary representation
of a real number in the interval [0, 1]. Thus, it is not uncommon to equate languages with
real numbers. (The computability literature contains many investigations of this sort; see,
for example, [Mil04, YDD04, DHNS03, NST05].)

Viewed in this light, the finite and co-finite languages correspond exactly to dyadic ra-
tional numbers. For instance, the sequences 1000 . . . and 0111 . . . (corresponding to the
languages {λ} and {x : x 6= λ}, respectively) both denote the number 1

2
=
∑∞

i=2 2−i. Any
real number in [0, 1] that is not a dyadic rational has exactly one binary representation,
and hence corresponds to exactly one language. The literature in computability theory
(dating back to Turing’s original work [Tur36]) has tended to focus on the placement of
various classes of reals in the hierarchy of (non-)computability classes. (See, for example,
[Mil04, YDD04, DHNS03, NST05].)

In contrast, the literature in computational complexity theory has tended to focus on the
more “practical” questions of either computing approximations of various real numbers to a
desired accuracy, or of obtaining all of the first n bits of their binary representations. For
example, the original investigations of Hartmanis and Stearns [HS65], which can be said to
have given birth to the field of computational complexity theory, focused on the question of
classifying the complexity of various real numbers, in terms of computing the first n bits of
their binary representations. Most other papers that have dealt with the complexity of real
numbers (such as [Ko83, YK13, Jeř12, ACLG20, NV18]) have continued in a related vein
(focusing more often on approximations), as has most of the significant work formalizing
the notions of computability and complexity of real functions (e.g., [KF82, Wei00, BH21]).
We do not dispute the motivations for defining the “complexity” of a real number in this
way. After all, there are many applications that require knowing the bits of

√
2 to desired

accuracy, whereas we struggle to conceive of a practical application that requires us to take
a large string x as input (such as x = 10100) and return the xth bit of

√
2.

Nonetheless, there are important theoretical considerations that argue in favor of pre-
cisely this sort of investigation. Freivalds [Fre12] provides a very compelling survey of the
history of mathematical considerations that have led investigators over the centuries to study
“normal” reals and “automatic” reals. (Briefly, a real number corresponding to a language
A is automatic if and only if A is regular. For more on this topic, we refer the reader to the
book by Allouche and Shallit [AS03].) It was viewed as a very significant achievement when
Adamczewski, Bugeaud, and Luca proved that no irrational algebraic number is automatic
[ABL04, AB07]. (It is an easy exercise to see that every rational number corresponds to a
regular language, and hence is automatic.)

In this paper, we give an upper bound on the complexity of languages corresponding to
algebraic real numbers. We show that all such languages2 lie in CH5: the fifth level of the
“counting hierarchy”, whose levels are defined as follows.

� CH1 = PP

2It is mistakenly claimed in [DP12] that these languages lie in PHCH2 . We do not know how to obtain
that stronger upper bound.
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� CHk+1 = PPCHk .

A real number is algebraic if it is a root of some (non-zero) univariate polynomial with
integer coefficients. Jeřábek [Jeř12] showed that, for any given constant d, there is a uniform
family of TC0 circuits that will take as input a degree d univariate polynomial p (represented
by its sequence of integer coefficients), along with 1n, and produce as output the first n bits
of the binary representation of each of the roots of p. Because of well-known connections
between TC0 and the counting hierarchy (see Proposition 2), this easily implies that every
algebraic number lies in the counting hierarchy. However, Jeřábek’s techniques yield thresh-
old circuits whose depth depends on the degree of the polynomial p, and consequently his
approach does not provide any constant k such that every algebraic real would lie3 in CHk;
we show that this does hold, for k = 5. (We actually prove a better upper bound: PHCH3 ,

which (by Toda’s theorem [Tod91]) is contained in PCH4 ⊆ CH5.) It is fair to ask how
tight this upper bound is. Thus we also consider lower bounds, although the lower bounds
we present are quite weak. For every prime modulus m, we show that there are algebraic
numbers (in fact, rational numbers) that lie outside of AC0[m]). For rational numbers, this
lower bound is rather tight; the language corresponding to any rational number lies in ACC0

(and hence lies in AC0[m] for some m ∈ N). Although it seems reasonable to conjecture that
irrational algebraic numbers are even more difficult than rational ones, we currently do not
know of any irrational algebraic number that lies outside of AC0; nor do we know of any
irrational algebraic number that lies in AC0. Our upper bound of PHCH3 is the best upper
bound that we know of, for any irrational algebraic number.

Our techniques also apply to certain transcendental numbers, such as π. Yap [Yap10]
showed that there is a logspace-computable function that, on input 1n, will output the first
n bits of π. (This theorem is also discussed by Lipton in [LR13, Chapter 31].) Thus the
language corresponding to π lies in PSPACE. We improve this, to show that π ∈ PHCH3

(and we show that the first n bits of π can be computed in uniform TC0). We also answer a
question posed by Yap, by showing that, for any base b, the first n digits of π expressed in
base b can be produced in TC0, and hence in logspace.

The main technical contribution of our work consists of improved algorithms for integer
division and related problems. The chain that connects integer division and the complexity
of algebraic numbers consists of the following links:

1. Our PHCH3 upper bound on algebraic numbers relies on an improved upper bound
on the problem of computing a given bit of a number represented by an arithmetic
circuit (or straight-line program). This problem, known as BitSLP was introduced in
[ABKPM09], where it was shown to be hard for #P [ABKPM09], and was also shown

3A referee points out that the argument of [Jeř12] requires depth related to the degree d primarily because
it takes a polynomial p as input (specified by its coefficients), whereas in our work here the polynomial is
fixed. The referee asserts that the algorithm in [Jeř12] can be modified, by hardwiring information related
to a specific root of p, to show that every algebraic number lies in PHCH4 , not quite matching the bound
that we present.
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to lie in the counting hierarchy.4 The best previously-known upper bound for the
complexity of BitSLP is the bound mentioned in [ABKPM09] and credited there to
[AS05]: PHCH4 .

2. That bound of PHCH4 follows via a straightforward translation of a uniform TC0 algo-
rithm for division and for conversion to and from Chinese Remainder Representation,
which was presented in [HAB02]. The algorithms presented in [HAB02] also play a cen-
tral role in the TC0 root-finding algorithm of [Jeř12]. We give improved uniform TC0

algorithms for these problems, which in turn yield a PHCH3 upper bound on BitSLP,
and on algebraic reals.

The rest of the paper is organized as follows. In Section 2 we present the necessary
background and definitions for our theorems that deal with (arithmetic and Boolean) circuits.
In Section 3 we give improved algorithms for a variety of problems, including integer division,
iterated product, and matrix powering, and we show how these algorithms yield improved
upper bounds in the Counting Hierarchy for some fundamental problems about arithmetic
circuits. In Section 4 we review background material about algebraic numbers and root-
finding algorithms. Then in Section 4.2 we present our upper bound on the complexity of
languages A whose characteristic sequence χA is an algebraic number, and we also present
related results about certain transcendental numbers (including π). We conclude with a
discussion of open problems in Section 5.

2 Arithmetic and Boolean Circuits

The algorithms that we present depend on Chinese Remainder Representation (CRR). Let
us fix the notation that we will use. Given a list of primes Π = (p1, . . . , pm) and a number
X ∈ N, the CRRΠ representation of X is the list (X mod p1, . . . , X mod pm). We omit the
subscript Π when it is clear from context.

We need to refer (repeatedly) to the binary expansion of a rational number. Furthermore,
we want to avoid possible confusion caused by the fact that some numbers have more than
one binary expansion (e.g. 1 =

∑∞
i=1 2−i). Thus the following definition fixes a unique binary

representation for every rational number.

Definition 1

The binary expansion of a nonnegative rational number X/Y is the unique expression X/Y =∑∞
i=−∞ ai2

i, where each ai ∈ {0, 1}, and where the binary expansion of any integer multiple
of 2j has ai = 0 for all i < j.

The binary expansion of X/Y correct to m places is the sequence of bits representing∑blog(X/Y )c
i=−m ai2

i.

4This connection between numerical computation and arithmetic circuits has also been exploited in other
work, such as [COW13, OW14b, OW14a, LOW15].
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A circuit is a directed acyclic graph, whose nodes are called gates and whose edges are
called wires. Gates with indegree zero are input gates. We usually restrict attention to
circuits with exactly one gate of outdegree zero; this gate is called the output gate. In this
paper, all input gates will be connected either to constants or to input variables, which can
be assigned values in {0, 1}.

In an arithmetic circuit, all gates other than input gates are labeled with an operation
in {+,×}, and the constants that we will allow are {0, 1,−1}. Thus each wire leading from
gate g to gate h will “carry” the integer value that is computed at g to be fed into gate h.

Arithmetic circuits of polynomial size can produce numbers that require exponentially-
many bits to represent in binary. The problem5 known as BitSLP is the problem of deter-
mining a given bit of this binary representation. Formally, BitSLP is

BitSLP = {(C, i, b) : the i-th bit of the number represented by arithmetic circuit C is b}.

A related problem,

PosSLP = {C : the number represented by arithmetic circuit C is > 0})

and a host of other problems on inferring properties of succinctly represented numbers were
introduced in an article by Allender, Bürgisser, Kjeldgaard-Pedersen and Miltersen [ABKPM09].
The main goal of [ABKPM09] was to provide a complexity-theoretic framework to study
problems arising in numerical analysis. It is shown in [ABKPM09] that BitSLP is hard for
#P, and it also conjectured there that PosSLP 6∈ P/poly.

It is important to note that the arithmetic circuits considered in PosSLP and BitSLP do
not have any input variables. Let us emphasize this point: In this paper, we focus on
arithmetic circuits without input variables. Thus an arithmetic circuit is a (possibly
very compact) representation of an integer.

The Boolean circuits that we will consider will have gates (other than input gates) labeled
with an operation in {NOT, AND, OR, MAJORITY}. These gates (which have unbounded
fan-in, except for NOT gates, which have fan-in 1) produce as output the logical NOT, AND,
OR, and MAJORITY of their inputs, respectively (where MAJORITY(x1, . . . , xn) evaluates
to 1 iff strictly more than n/2 of the input bits are 1).

The depth of a circuit is the length of the longest path from an input gate to the output
gate. A circuit family is a set {Cn : n ∈ N} where each Cn has n input gates. A circuit family
is dlogtime-uniform if there is a Turing machine takes an input string (n, g, h) of length m
and determines in time O(m) the labels of g and h in Cn and also reports if there is a wire
in Cn from g to h. A circuit family is said to be nonuniform if no uniformity condition is
imposed. TC0 is the set of languages that are recognized by dlogtime-uniform circuit families
of polynomial size and depth O(1). AC0 is the set of languages that are recognized by such
circuit families that have no MAJORITY gates.

We also need to refer to functions computable in circuit classes. The function f is said
to be in C (such as C = AC0 or TC0) if the length of f(x) is polynomial in the length of x,
and the language {(x, i, b) : the ith bit of f(x) is b} is in C.

5“SLP” stands for “straight-line program”; which is a model equivalent to arithmetic circuits. Throughout
the rest of the paper, we will stick with the arithmetic circuit formalism.
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For more on circuit complexity classes such as AC0 and TC0, as well as a discussion of
dlogtime uniformity, see [Vol99]. For background on other standard complexity classes such
as PP,#P,NP,P etc., consult a standard text such as [AB09].

There are several possible variants of “depth” that one could choose to study. For in-
stance, several papers have studied circuits consisting only of MAJORITY gates, and tight
bounds are known for the depth required for several problems, in that model. (See, for in-
stance [GK98, SR94, Weg93, She07] and other work referenced there.) Since our motivation
comes largely from the desire to understand the complexity of problems in the counting
hierarchy, it turns out that it is much more relevant to consider the notion of majority depth

that was considered by Maciel and Thérien [MT98]. The class T̂C
0

d consists of functions
computable by families of threshold circuits of polynomial size and constant depth such that
no path from an input to an output gate encounters more than d MAJORITY gates. Thus

the class of functions with majority depth zero, T̂C
0

0, is precisely AC0. In order to explain

the connection between T̂C
0

d and the counting hierarchy, recall how the levels of the counting
hierarchy are defined:

CH1 = PP, and CHk+1 = PPCHk .

The counting hierarchy is analogous in some ways to the polynomial hierarchy PH = NP ∪
NPNP ∪ . . .. The following proposition can be interpreted as saying that PHCHd is an

exponential analog of T̂C
0

d.

Proposition 2 (Implicit in [ABKPM09, Theorem 4.1].) Let A be a set such that, for some

k, some polynomial-time computable function f and for some dlogtime-uniform T̂C
0

d circuit
family Cn, it holds that x ∈ A if and only if C|x|+2|x|k

(x, f(x, 1)f(x, 2) . . . f(x, 2|x|
k
)) accepts.

Then A ∈ PHCHd.

(One important part of the proof of Proposition 2 is the fact that, by Toda’s theorem [Tod91],

for every oracle A, PPPH
A

⊆ PPP
A

. Thus all of the AC0 circuitry inside the T̂C
0

d circuit can
be swallowed up by the PH part of the simulation.)

Note that the dlogtime-uniformity condition is crucial for Proposition 2. Thus, for the

remainder of this paper, all references to T̂C
0

d will refer to the dlogtime-uniform version of
this class, unless we specifically refer to nonuniform circuits.

3 Overview of the New Algorithmic Results

In this section, we present new uniform TC0 algorithms for integer division, converting from
CRR to binary, computing a power of a given integer, and computing a power of a given
matrix (of bounded dimension). Table 1 compares the complexity bounds that Maciel and
Thérien obtained in the nonuniform setting with the bounds that we are able to obtain in the
uniform setting. (Maciel and Thérien also considered several problems for which they gave
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Nonuniform Uniform
Problem Majority-Depth [MT98] Majority-Depth [This Paper]

Iterated multiplication 3 3
Division 2 3
Powering 2 3

CRR-to-binary 1 3
Matrix powering O(1) [MP00, HAB02] 3

Table 1: Prior bounds and new bounds on Majority-depth for various problems.

uniform circuit bounds; the problems listed in Table 1 were not known to lie in dlogtime-
uniform TC0 until the subsequent work of [HAB02].) All previously-known dlogtime-uniform
TC0 algorithms for these problems rely on the CRR-to-binary algorithm of [HAB02], and
thus have at least majority-depth 4 (as analyzed by [AS05]); no other depth analysis beyond
O(1) was attempted.

In all of the cases where our uniform majority-depth bounds are worse than the nonuni-
form bounds given by [MT98], our algorithms also give rise to nonuniform algorithms that
match the bounds of [MT98] (by hardwiring in some information that depends only on the
length), although in all cases the algorithms differ in several respects from those of [MT98].

The most efficient previously-known TC0 algorithms for the problems considered in this
paper all make use of clever decompositions of the problem at hand, in terms of partial
evaluations or approximations. The technical innovations in our improved algorithms rely
on introducing yet another approximation, as discussed in Lemmas 7 and 10.

Table 1 also lists one problem that was not considered by Maciel and Thérien: the
problem of taking as input 1m and a k × k matrix A, and producing Am. For any fixed
k, this problem was shown to be in nonuniform TC0 by Mereghetti and Palano6 [MP00]; it
follows from [HAB02] that their algorithm can be implemented in dlogtime-uniform TC0.
The corresponding problem of computing large powers of a k × k matrix (i.e., when m is
given in binary) has been discussed recently [OW14b, GOW15]. We show that this version
of matrix powering is in PHCH3 , by making use of the improved algorithm for CRR-to-binary,
which plays an important role in our PHCH3 algorithm for BitSLP.

In addition to BitSLP, there has also been interest in the related problem PosSLP [EY10,
KP07, KS12, KP11]. PosSLP ∈ PHCH2 , and is not known to be in PH [ABKPM09], but in
contrast to BitSLP, it is not known (or believed [EY10]) to be NP-hard. Our theorems do not
imply any new bounds on the complexity of PosSLP, but we do conjecture that BitSLP and
PosSLP both lie in PHPP. This conjecture is based mainly on the heuristic that says that, for
problems of interest, if a nonuniform circuit is known, then corresponding dlogtime-uniform
circuits usually also exist. Converting from CRR to binary can be done nonuniformly in
majority-depth one, and there is no reason to believe that this is not possible uniformly –
although it seems clear that a different approach will be needed, to reach this goal.

6The reader should be cautioned that it is stated in [MP00] that iterated matrix product of k× k integer
matrices is computable in NC1. In fact, the best known upper bound is GapNC1 [CMTV98].
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The well-studied Sum-of-Square-Roots problem reduces to PosSLP [ABKPM09], which
in turn reduces to BitSLP. But the relationship between PosSLP and the matrix powering
problem (given a matrix A and an n-bit integers (k, j), output the kth bit of a given entry
of Aj) is unclear, since matrix powering corresponds to evaluating very restricted arithmetic
circuits. Note that some types of arithmetic involving large numbers can be done in P; see
[HKR10, GOW15]. Might matrix powering also lie in PH?

In Section 3.5, we provide a very weak “hardness” result for the problem of computing
the bits of large powers of 2-by-2 matrices, to shed some dim light on this question. We
show that the Sum-of-Square-Roots problem reduces to matrix powering via PHPP-Turing
reductions.

3.1 Improved Uniform Circuits for Division

Our new algorithm for division makes use of several useful subroutines that are computable

in AC0 and T̂C
0

1. These are summarized in the following lemma:

Lemma 3 Let x, y, i, j, k, xj be numbers in the interval (0, nc) ( where c ≥ 3 is a constant).
Let X,Xj ∈ [0, 2n) and let p < nc be prime. Then the following operations have the indicated
complexities:

1. p 7→ first nc bits of 1/p is in T̂C
0

0 = AC0.

2. p, k,X1 . . . , Xk 7→
∑k

j=1Xj mod p is in T̂C
0

1.

3. x 7→ xi mod p is in T̂C
0

0 = AC0.

4. p 7→ gp is in T̂C
0

0 = AC0 where gp is a generator of the multiplicative group modulo p.

5. X 7→ X mod p is in T̂C
0

1.

6. x, y 7→ xy mod p is in T̂C
0

0 = AC0.

7. (x1, . . . , xk) 7→
∏k

j=1 xj mod p is in T̂C
0

1.

Proof: We list the proofs of items in the Lemma above:

1. Follows from Lemma 4.2 and Corollary 6.2 in [HAB02]. In Section 4.3, we will also
need the fact that the base-β representation of 1/p is also computable in AC0. (See
also Note 12.) Thus we present the details here.

Claim 4 The language {(1n, p, σ) : p ≤ nc and the nth symbol in the base-β represen-
tation of 1/p is σ} is in AC0.
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Proof: Let a and b be such that βn = ap+ b with b = βn mod p. The nth digit of the
base-β expansion of the rational number 1/p is equal to the low-order digit of a. Since
ap + b is congruent to zero modulo β, it follows that the low-order digit of a is equal
to −p−1b mod β, where p−1 is the multiplicative inverse of p mod β. The result now
follows from the fact that computing βn mod p is in AC0 [HAB02], and that p−1 mod β
can be computed in AC0. 2

2. Follows from Corollary 3.4.2 in [MT98].

3. Follows from Corollary 6.2 in [HAB02].

4. Follows from testing each integer x ∈ [1, n−1] for being a generator by checking if ∀i ≤
p−1

2
xi 6≡ 1 mod p and reporting the first successful x (implicit in [HAB02, ABKPM09]).

5. Follows from (the proof of) Lemma 4.1 in [HAB02].

6. Follows from Proposition 3.7 in [MT98] and the fact that two log n-bit integers can be
multiplied in AC0.

7. Follows from the reduction of multiplication to addition of discrete logs and the previ-
ous parts.

2

3.2 A New Division Algorithm

We now give a construction of efficient threshold circuits for division.

Theorem 5 The function taking as input X ∈ [0, 2n), Y ∈ [1, 2n), and 0m and producing as

output the binary expansion of X/Y correct to m places is in T̂C
0

3.

Proof: This task is trivial if Y = 1; thus in the rest of this argument assume that Y ≥ 2.
Computing the binary expansion of Z/Y correct to m places is equivalent to computing

b2mZ/Y c. Thus we will focus on the task of computing bX/Y c, given integers X and Y .
The basic structure of all known TC0 algorithms for division (reducing the problem to

iterated product, and computing iterated product via a reduction to iterated addition, via
conversion to and from Chinese Remainder Representation) has remained unchanged since
the pioneering work of [BCH86]. Subsequent improvements [CDL01, HAB02, MT98, SR94]
have focused on finding more efficient implementations of these various tasks.

Our approach will be to compute Ṽ (X, Y ), a strict underestimate of X/Y , such that

X/Y − Ṽ (X, Y ) < 1/Y . Since Y > 1, we have that bX/Y c 6= b(X + 1)/Y c if and only if

(X + 1)/Y = bX/Y c+ 1. It follows that in all cases bX/Y c = bṼ (X + 1, Y )c, since⌊
X

Y

⌋
≤ X

Y
=
X + 1

Y
− 1

Y
< Ṽ (X + 1, Y ) <

X + 1

Y
.
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Note that, in order to compute bX
Y
c, we actually compute an approximation to (X + 1)/Y .

The approximation Ṽ (X, Y ) is actually defined in terms of another rational approxima-

tion W (X, Y ), which will have the property that Ṽ (X, Y ) ≤ W (X, Y ) < X/Y . (W (X, Y )

is easier to compute, which is why we introduce it.) We postpone the definition of Ṽ (X, Y ),
and focus for now on W (X, Y ), an under approximation of X

Y
with error at most 2−(n+1).

Using AC0 circuitry, we can compute a value t ≥ 2 such that7 2t−1 ≤ Y < 2t.
Let u = 1 − 2−tY . Then u ∈ (0, 1

2
]. Thus, Y −1 = 2−t(1 − u)−1 = 2−t(1 + u + u2 + . . .).

Set Y ′ = 2−t(1 + u+ u2 + . . .+ u2n+1), then

0 < Y −1 − Y ′ ≤ 2−t
∑

j>2n+1

2−j < 2−(2n+1)

Define W (X, Y ) to be XY ′. Hence, 0 < X
Y
−W (X, Y ) < 2−(n+1).

We find it useful to use this equivalent expression for W (X, Y ):

W (X, Y ) =
X

2t

2n+1∑
j=0

(1− Y

2t
)j =

1

22(n+1)t

2n+1∑
j=0

X(2t − Y )j2(2n+1−j)t.

Define Wj(X, Y ) to be X(2t−Y )j(2(2n+1−j)t). Thus W (X, Y ) = 1
22(n+1)t

∑2n+1
j=0 Wj(X, Y ).

Lemma 6 Let Π be any set of primes such that the product M of these primes lies in
(2n

c
, 2n

d
) for some d > c ≥ 3. Then, given X, Y,Π we can compute the CRRΠ representations

of the 2(n+ 1) numbers Wj(X, Y ) (for j ∈ {0, . . . , 2n+ 1}) in T̂C
0

1.

Proof: With the aid of Lemma 3, we see that using AC0 circuitry, we can compute

� 2t − Y

� 2j mod p for each prime p ∈ Π and various powers j, and

� a generator mod p for each prime p ∈ Π.

In T̂C
0

1 we can compute X mod p and (2t − Y ) mod p (each of which has O(log n) bits).
Using those results, with AC0 circuitry we can compute the powers (2t − Y )j mod p and
then do additional arithmetic on numbers of O(log n) bits to obtain the product X(2t −
Y )j(2(2n+1−j)t) mod p for each p ∈ Π. (The condition that c ≥ 3 ensures that the numbers
that we are representing are all less than M .) 2

7In Section 4.3, we will need to consider a variant algorithm, where, in this first step, a value t is
computed such that βt−1 ≤ Y < βt. Observe that this is easy to do, if Y is expressed in base-β notation.
Also, in this case, if we set u = 1 − β−tY . Then u ∈ (0, β−1

β ], and Y −1 = β−t(1 − u)−1. This will

also involve changing the definition of W and Wj , so that Wj(X,Y ) is X(βt − Y )j(β(2n+1−j)t), and hence

W (X,Y ) = 1
β2(n+1)t

∑2n+1
j=0 Wj(X,Y ). We will refer to this variant of the algorithm as the β-variant. The

analysis of the β-variant differs from that of the binary version in only trivial respects.
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Having the CRRΠ representation of the number Wj(X, Y ), our goal might be to convert
the Wj(X, Y ) to binary, and take their sum. In order to do this efficiently, we instead first
show how to obtain an approximation (in binary) to W (X, Y )/M where M =

∏
p∈Π p, and

then in Lemma 10 we build on this to compute our approximation Ṽ (X, Y ) to W (X, Y ).
Recall that W (X, Y ) = 1

22(n+1)t

∑2n+1
j=0 Wj(X, Y ). Thus the number 22(n+1)tW (X, Y ) is an

integer with the same significant bits as W (X, Y ).

Lemma 7 Let Π be any set of primes such that the product M of these primes lies in
(2n

c
, 2n

d
) for a fixed constant d > c ≥ 3, and let b be any natural number. Then, given

X, Y,Π we can compute the binary representation of a good approximation to 22(n+1)tW (X,Y )
M

in T̂C
0

2 (where by good we mean that it under-estimates the correct value by at most an
additive term of 1/2n

b
).

Proof: Let hΠ
p = (M/p)−1 mod p for each prime p ∈ Π.

If we were to first compute a good approximation ÃΠ to the fractional part of:

AΠ =
∑
p∈Π

(22(n+1)tW (X, Y ) mod p)hΠ
p

p

i.e. if ÃΠ were a good approximation to AΠ − bAΠc, then ÃΠM would be a good approx-
imation to 22(n+1)tW (X, Y ). This follows from observing that the fractional part of AΠ is

exactly 22(n+1)tW (X,Y )
M

(as in [HAB02, Lemma 4.3] and [ABKPM09, Theorem 4.2]).
Instead of working with AΠ, we will work with

A′Π =
∑
p∈Π

2n+1∑
j=0

(Wj(X, Y ) mod p)hΠ
p

p
.

Note that the exact magnitudes of the two quantities AΠ, A
′
Π are not the same but their

fractional parts will be the same. Thus we will compute ÃΠ as a good approximation to the
fractional part of A′Π. Since we are adding up 2(n+ 1)|Π| approximate quantities it suffices
to compute each of them to bn,b,Π = 2nb + 2(n+ 1)|Π| bits of accuracy to ensure:

0 ≤ 22(n+1)tW (X, Y )

M
− ÃΠ <

1

2nb
.

Now we analyze the complexity. By Lemma 6, we obtain in T̂C
0

1 the CRRΠ representation
of Wj(X, Y ) ∈ [0, 2n) for j ∈ {0, . . . , O(n)}. Also, by Lemma 3, each hΠ

p can be computed

in T̂C
0

1, and polynomially-many bits of the binary expansion of 1/p can be obtained in AC0.
Using AC0 circuitry we can multiply together the O(log n)-bit numbers Wj(X, Y ) mod

p and hΠ
p , and then obtain the binary expansion of ((Wj(X, Y ) mod p)hΠ

p ) · (1/p) (since
multiplying an n-bit number by a log n bit number can be done in AC0).

11



Thus, with one more layer of majority gates, we can compute a good approximation to

A′Π =
∑
p∈Π

2n+1∑
j=0

(Wj(X, Y ) mod p)hΠ
p

p

and strip off the integer part, to obtain the desired approximation ÃΠ. 2

Corollary 8 Let Π be any set of primes such that the product M of these primes lies in
(2n

c
, 2n

d
) for a fixed constant d > c ≥ 3. Then, given Z in CRRΠ representation and the

numbers hΠ
p for each p ∈ Π, we can compute the binary representation of a good approxi-

mation to Z
M

in T̂C
0

1.

Proof: This follows from the analysis presented in the proof of Lemma 7, in the special case
when W1 = Z and Wj = 0 for all j > 1. 2

Before presenting our approximation Ṽ (X, Y ), first we present a claim, which helps
motivate the definition. In the claim, and in the subsequent discussion, let Πi for i ∈
{1, . . . , n`} be n` pairwise disjoint sets of primes such that Mi =

∏
p∈Πi

p ∈ (2n
c
, 2n

d
) (for

some constants c, d : 3 ≤ ` ≤ c < d). Let Π =
⋃n`

i=1 Πi.

Claim 9 For any value A, it holds that

A(1− n`

2n`
) <

A
∏n`

i=1 (Mi − 1)∏n`

i=1 Mi

< A.

Proof: It suffices to show that

(1− n`

2n`
) <

∏n`

i=1 (Mi − 1)∏n`

i=1Mi

< 1

where the final inequality is trivial. Let m = n` and let x = 2n
`
. Then (1 − n`

2n`
) = 1 − m

x

and (1 − 1
x
)m ≤

∏n`

i=1 (Mi−1)∏n`

i=1Mi

. Thus the claim holds if we show that, for all x > 1 and for all

integers m > 1,

1− m

x
<

(
1− 1

x

)m
.

This holds by induction. Assume that 1−m/x ≤ (1− 1/x)m. (This holds for m = 1.) Then
1−(m+1)/x = 1−m/x+m/x−(m+1)/x < (1−1/x)m−1/x < (1−1/x)m−(1−1/x)m1/x =
(1− 1/x)m(1− 1/x). This completes the induction, and the proof of the claim. 2

12



Now, finally, we present our desired approximation. Ṽ (X, Y ) is 2n
` · V ′(X, Y ), where

V ′(X, Y ) is an approximation (within 1/2n
2`

) of

V (X, Y ) =
W (X, Y )

∏n`

i=1 (Mi − 1)/2∏n`

i=1Mi

.

Note that

W (X, Y )− 2n
`

V (X, Y ) = W (X, Y )− 2n
`W (X, Y )

∏n`

i=1 (Mi − 1)/2∏n`

i=1Mi

= W (X, Y )− W (X, Y )
∏n`

i=1 (Mi − 1)∏n`

i=1Mi

< W (X, Y )
n`

2n`
<

22nn`

2n`

and

2n
`

V (X, Y )− Ṽ (X, Y ) = 2n
`

V (X, Y )− 2n
`

V ′(X, Y )

= 2n
`

(V (X, Y )− V ′(X, Y ))

≤ 2n
`

(
1

2n2` )

=
2n

`

2n2` .

Thus X/Y − Ṽ (X, Y ) is equal to

(X/Y −W (X, Y )) + (W (X, Y )− 2n
`

V (X, Y )) + (2n
`

V (X, Y )− Ṽ (X, Y ))

and hence

X/Y − Ṽ (X, Y ) < 2−(n+1) +
n`22n

2n`
+

2n
`

2n2`

< 1/Y,

for all n ≥ 2.

Lemma 10 Let Πi for i ∈ {1, . . . , n`} be n` pairwise disjoint sets of odd primes such that

Mi =
∏

p∈Πi
p ∈ (2n

c
, 2n

d
) (for some constants c, d : 3 ≤ c < d). Let Π =

⋃n`

i=1 Πi. Then,

given X, Y and the Πi, we can compute Ṽ (X, Y ) in T̂C
0

3.

Proof: Via Lemma 3, in T̂C
0

1 we can compute the CRRΠ representation of each Mi, as well
as the numbers Wj mod p (using Lemma 6). Also, as in Lemma 7, we can compute the
values hΠ

p for each prime p.

13



Then, via Lemma 3, with one more layer of majority gates we can compute the CRR
representation of

∏
i (Mi − 1)/2, as well as the CRR representation of 22(n+1)tW (X, Y ) =∑2n+1

j=0 Wj(X, Y ). The CRR representation of the product 22(n+1)tW (X, Y ) ·
∏

i (Mi − 1)/2

can then be computed with AC0 circuitry to obtain the CRR representation of the numerator
of the expression for V (X, Y ). (It is important to note that 22(n+1)tW (X, Y )·

∏
i (Mi − 1)/2 <∏

iMi, so that it is appropriate to talk about this CRR representation. Indeed, that is the
reason why we divide each factor Mi − 1 by two.)

This value can then be converted to binary with one additional layer of majority gates,
via Corollary 8, to obtain Ṽ (X, Y ). 2

This completes the proof of Theorem 5. 2

It is occasionally useful to assume that the CRR basis Π can be decomposed into pairwise
disjoint sets Πi as in Lemma 10. We shall refer to such a basis Π as a structured CRR.

Corollary 11 Let Π be any set of primes that is the union of pairwise disjoint sets Πi, such
that, for all i, Mi =

∏
p∈Πi

p lies in (2n
c
, 2n

d
) for fixed constants d > c ≥ 3. Then, given Z

in CRRΠ representation, the binary representation of Z can be computed in T̂C
0

3.

Proof: Recall from the proof of Theorem 5 that, in order to compute the bits of Z/2, our
circuit actually computes an approximation to (Z+1)/2. Although, of course, it is trivial to
compute Z/2 if Z is given to us in binary, let us consider how to modify the circuit described

in the proof of Lemma 10, if we were computing Ṽ (Z + 1, 2), where we are given Z in CRR
representation.

With one layer of majority gates, we can compute the CRRΠ representation of each Mi

and the values hΠ
p for each prime p. (We will not need the numbers Wj mod p.)

Then, with one more layer of majority gates we can compute the CRR representation
of
∏

i (Mi − 1)/2. In place of the gates that store the value of the CRR representation of
22(n+1)tW (X, Y ), we insert the CRR representation of Z (which is given to us as input) and
using AC0 circuitry store the value of Z+1. The CRR representation of the product (Z+1) ·∏

i (Mi − 1)/2 can then be computed with AC0 circuitry to obtain the CRR representation
of the numerator of the expression for V (Z + 1, 2).

Then this value can be converted to binary with one additional layer of majority gates,
from which the bits of Z can be read off. 2

Note 12 Although we have stated our results in terms of converting from CRR to binary
notation, there is nothing special about base 2. As observed in [HAB02, All04], the approach
from Lemma 10 (and in Lemma 7) carries over with only trivial adjustments, to convert
from CRR to base ten or to representation in any other base. The only “new” ingredient
that is required is that the base-β expansion of 1/p can be computed to a polynomial number
of bits of accuracy in AC0. (See Claim 4.8)

8It should be mentioned that the β-variant of the division algorithm is not required, for conversion from
CRR to base-β. The β-variant is introduced for other considerations that arise in Section 4.3.
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It is rather frustrating to observe that the input values Z are not used until quite late in

the T̂C
0

3 computation (when just one layer of majority gates remains). However, we see no
simpler uniform algorithm to convert CRR to binary.

For our application regarding problems in the counting hierarchy, it is useful to consider
the analog to Theorem 5 where the values X and Y are presented in CRR notation.

Theorem 13 The function taking as input X ∈ [0, 2n), Y ∈ [1, 2n) (in structured CRR) as
well as 0m, and producing as output the binary expansion of X/Y correct to m places is in

T̂C
0

3.

Proof: We assume that the CRR basis consists of pairwise disjoint sets of primes Πi, as in
Lemma 10.

The algorithm is much the same as in Theorem 5, but there are some important differences
that require comment. The first step is to determine if Y = 1, which can be done using AC0

circuitry (since the CRR of 1 is easy to recognize). The next step is to determine a value
t such that 2t−1 ≤ Y < 2t. Although this is trivial when the input is presented in binary,
when the input is given in CRR it requires the following lemma:

Lemma 14 (Adapted from [AAD00, DMS94, ABKPM09]) Let X and Y be integers from

[0, 2n] specified by their residues modulo each p ∈ Π. Then, the predicate X > Y is in T̂C
0

2

Since we are able to determine inequalities in majority-depth two, we will carry out the
initial part of the algorithm from Theorem 5 using all possible values of t, and then select
the correct value between the second and third levels of MAJORITY gates.

Thus, for each t, and for each j, we compute the values Wj,t(X + 1, Y ) = (X + 1)(2t −
Y )j(2(2n+1−j)t) in CRR, along with the desired number of bits of accuracy of 1/p for each p
in our CRR basis.

With this information available, as in Lemma 10, in majority-depth one we can compute
hΠ
p , as well as the CRR representation of each Mi, and thus with AC0 circuitry we obtain

(Wj,t(X + 1, Y ) and the CRR for each (Mi − 1)/2.
Next, with our second layer of majority gates we sum the values Wj,t(X + 1, Y ) (over all

j), and at this point we also will have been able to determine which is the correct value of
t, so that we can take the correct sum, to obtain 22(n+1)tW (X + 1, Y ).

Thus, after majority-depth two, we have obtained the same partial results as in the proof
of Lemma 10, and the rest of the algorithm is thus identical. 2

The following generalization of Theorem 13 will be useful for us in Section 4.3.

Theorem 15 There is a function computable in T̂C
0

3 that takes as input the structured
CRR representation of a sequence X1, Y1, X2, Y2, . . . , Xr, Yr, as well as as 0m and 1t with the
property that, for each i, 2t−1 ≤ Yi < 2t, and produces as output the binary expansion of∑r

i=1
Xi
Yi

correct to m places.
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Proof: The näıve approach, of simply taking the sum of the circuits that result from The-
orem 13, would be too expensive in terms of majority-depth. Thus we dive deeper into the
details of how each quotient is computed.

Recall the definition of Wj(X, Y ) (immediately before Lemma 6), and recall also that X
Y

is approximated by W (X + 1, Y ) = 1
22(n+1)t

∑2n+1
j=0 Wj(X + 1, Y ).

Thus
∑r

i=1
Xi
Yi
≈
∑r

i=1
1

22(n+1)t

∑2n+1
j=0 Wj(Xi + 1, Yi), where the approximation is a correct

underapproximation to nO(1) bits
As in the proof of Theorem 13, after one level of majority gates, we can have computed the

values of Wj(Xi + 1, Yi) (in CRR notation), and with another level of majority gates, we can
compute the CRR of

∑r
i=1

1
22(n+1)t

∑2n+1
j=0 Wj(Xi + 1, Yi), and (as in the proof of Theorem 13)

with one more level of majority gates, we obtain the binary encoding of the desired result.
2

Proposition 16 Iterated product is in uniform T̂C
0

3.

Proof: The overall algorithm is identical to the algorithm outlined in [MT98], although the
implementation of the basic building blocks is different. In majority-depth one, we convert
the input from binary to CRR. With one more level of majority gates, we compute the CRR
of the product.

Simultaneously, in majority-depth two we compute the bottom two levels of our circuit
that converts from CRR to binary, as in Corollary 11.

Thus, with one final level of majority gates, we are able to convert the answer from CRR
to binary. 2

Remark The theorems and proofs in this section are stated in terms of inputs and out-
puts that are non-negative integers. But many of our results in subsequent sections deal
with computation involving arithmetic circuits, which produce negative numbers as output.
But in all such cases, the arithmetic circuits under consideration produce numbers in a pre-
determined range [−2t, 2t − 1] (where the arithmetic operations produce no intermediate
results that would “overflow” by falling outside this range). Using the usual two’s comple-
ment representation of negative numbers thus allows us to use the natural bijection between
[−2t, 2t − 1] and [0, 2t+1 − 1] and view the entire computation as taking place with natural
numbers (where values in the range [2t, 2t+1 − 1], with leading bit 1, correspond to the neg-
ative numbers, in 2’s complement notation). This bijection is an isomorphism with respect
to + and ×. Thus the algorithms in this section apply equally well in the setting where the
inputs may take on negative values.

3.3 Consequences for the Counting Hierarchy

Corollary 17 BitSLP ∈ PHCH3.
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Proof: This is immediate from Proposition 2 and Corollary 11.
Let f be the function that takes as input a tuple (C, (p, j)) and if p is a prime, evaluates

the arithmetic circuit C mod p and outputs the j-th bit of the result. This function f , taken

together with the T̂C
0

3 circuit family promised by Corollary 11, satisfies the hypothesis of
Proposition 2. (There is a minor subtlety, regarding how to partition the set of primes into
the groupings Mi, but this is easily handled by merely using all of the primes of a given
length, at most polynomially-larger than |C|.) 2

Via essentially identical methods, using Theorem 13, we obtain:

Corollary 18 {(CX , CY , N) : the N th bit of the quotient X/Y , where X and Y are repre-
sented by arithmetic circuits CX and CY , respectively} is in PHCH3.

Proof: We will appeal to Proposition 2 and Theorem 13. Let f be the polynomial-time-
computable function that, on input (x, y) = ((CX , CY , N), (b, p)) outputs “p not prime” if p
is not prime, and otherwise outputs the value of CX mod p if b = 0, and outputs the value
of CY mod p if b = 1. Note that the string (x, f(x, 1)f(x, 2) . . . f(x, 2|x|

k
)) can be viewed as

providing the CRR representation of the numbers represented by CX and CY . (Technically,
in order to directly appeal to Proposition 2 and Theorem 13, the definition of f will need
to be modified slightly, so that (x, f(x, 1)f(x, 2) . . . f(x, 2|x|

k
)) also ends in a sequence of

exponentially-many zeros. This is conceptually quite easy – by only considering numbers p
whose length, in bits, is polynomially-related to the length of N , and making some minor
formatting changes. In order to avoid introducing distracting technicalities, we leave these
minor details to the interested reader.)

Now, let A be the language in T̂C
0

3 that takes the CRR representation ofX and Y as input,
along with the number 0N , and outputs the N th bit of X/Y , as follows from Theorem 13.
The theorem now follows from Proposition 2. 2

3.4 Integer Matrix Powering

In this section, we continue presenting our algorithmic results, concentrating on the problem
of computing powers of integer matrices.

Theorem 19 Let d ≥ 2 be a natural number. The function MPOWd(A,m, p, q, i) taking as
input a d× d integer matrix A with n-bit integer entries, p, q, 1i, where p, q ∈ [d], i ∈ [O(n)]

and producing as output the i-th bit of the (p, q)-th entry of Am is in T̂C
0

3.

For a (d × d) matrix A, the characteristic polynomial χA(x) : Z → Z is a univariate
polynomial of degree at most d. Let q, r : Z → Z be univariate polynomials of degree at
most (m−d) and (d−1) such that xm = q(x)χA(x)+r(x). By the Cayley-Hamilton theorem,
we have that χA(A) = 0. So, in order to compute Am, it suffices to compute r(A).
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Lemma 20 Given a (d× d) matrix A with entries that are n-bit integers, the coefficients of

the characteristic polynomial of A in CRR can be computed in T̂C
0

1.

Proof: We convert the entries of A to CRR and compute the determinant of (xI − A).
This involves an iterated sum of O(2dd!) integers each of which is an iterated product of d

n-bit integers. The conversion to CRR is in T̂C
0

1 by item 5 in Lemma 3. Since addition,
multiplication, and powering of O(1) numbers of O(log n) bits is computable in AC0 (by
Lemma 3, items 3, 4 and 6), it follows that the coefficients of the characteristic polynomial

can be computed in T̂C
0

1. 2

Lemma 21 Given the coefficients of the polynomial r, in CRR, and given A in CRR, we
can compute Am in CRR using AC0 circuitry.

Proof: Recall that Am = r(A). Let r(x) = r0 + r1x + . . . + rd−1x
d−1. Computing any

entry of r(A) in CRR involves an iterated sum of O(1) many numbers which are themselves
an iterated product of O(1) many O(log n)-bit integers. The claim follows by appeal to
Lemma 3. 2

Lemma 22 (Adapted from [HV06]) Let p be a prime of magnitude poly(m). Let g(x) of
degree m and f(x) of degree d be monic univariate polynomials over GFp, such that g(x) =
q(x)f(x)+r(x) for some polynomials q(x) of degree (m−d) and r(x) of degree (d−1). Then,

given the coefficients of g and f , the coefficients of r can be computed in T̂C
0

1.

Proof: Following [HV06], let f(x) =
∑d

i=0 aix
i, g(x) =

∑m
i=0 bix

i, r(x) =
∑d−1

i=0 rix
i and

q(x) =
∑m−d

i=0 qix
i. Since f, g are monic, we have ad = bm = 1. Denote by fR(x), gR(x), rR(x)

and qR(x) respectively the polynomial with the i-th coefficient ad−i, bm−i, rd−i−1 and qm−d−i
respectively. Then note that xdf(1/x) = fR(x), xmg(1/x) = gR(x), xm−dq(1/x) = qR(x) and
xd−1r(1/x) = rR(x).

We use the Kung-Sieveking algorithm (as implemented in [HV06]). The algorithm is as
follows:

1. Compute f̃R(x) =
∑m−d

i=0 (1− fR(x))i via interpolation modulo p.

2. Compute h(x) = f̃R(x)gR(x) = c0 + c1x + . . . + cd(m−d)+mx
d(m−d)+m. from which the

coefficients of q(x) can be obtained as qi = cd(m−d)+m−i.

3. Compute r(x) = g(x)− q(x)f(x).

To prove the correctness of our algorithm, note that we have g(1/x) = q(1/x)f(1/x) +
r(1/x). Scaling the whole equation by xm, we get gR(x) = qR(x)fR(x)+xm−d+1rR(x). Hence
when we compute h(x) = f̃R(x)gR(x) in step 2 of our algorithm, we get

h(x) = f̃R(x)gR(x) = f̃R(x)qR(x)fR(x) + xm−d+1f̃R(x)rR(x).
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Note that f̃R(x)fR(x) = f̃R(x)(1 − (1 − fR(x))) =
∑m−d

i=0 (1 − fR(x))i −
∑m−d

i=0 (1 −
fR(x))i+1 = 1 − (1 − fR(x))m−d+1 (a telescoping sum). Since f is monic, fR has a con-
stant term which is 1 and hence (1−fR(x))m−d+1 does not contain a monomial of degree less
than (m− d+ 1). This is also the case with xm−d+1f̃R(x)rR(x), and hence all the monomials
of degree less than (m− d+ 1) belong to qR(x).

Now we justify why the algorithm above is amenable to a T̂C
0

1 implementation: Firstly,
note that given f(x) and g(x), the coefficients of fR(x) and gR(x) can be computed in
NC0. To compute the coefficients of f̃R(x), we use interpolation via the discrete Fourier
transform (DFT) using arithmetic modulo p. Find a generator w of the multiplicative group
modulo p and substitute x = {w1, w2, . . . , wp−1} to obtain a system of linear equations in
the coefficients F of f̃R(x) : V ·F = Y , where Y is the vector consisting of f̃R(wi) evaluated
at the various powers of w. Since the underlying linear transformation V (w) is a DFT, it
is invertible; the inverse DFT V −1(w) is equal to V (w−1) · (p − 1)−1, which is equivalent
to −V (w−1) mod p. We can find each coefficient of f̃R(x) by evaluating V −1Y , i.e., by an
inner product of a row of the inverse DFT-matrix with the vector formed by evaluating∑(m−d+1)

i=1 (1 − fR(x))i−1 at various powers of w and dividing by p − 1. The terms in this
sum can be computed in AC0, and then the sum can be computed in majority-depth one,
to obtain the coefficients of f̃R(x). The coefficients of h(x) in step 2 can be obtained by
iterated addition of the product of certain coefficients of f̃R and gR, but since the coefficients
of f̃R are themselves obtained by iterated addition of certain terms t, we roll steps 1 and
2 together by multiplying these terms t by the appropriate coefficients of gR. Thus steps 1
and 2 can be accomplished in majority-depth 1. Then step 3 can be computed using AC0

circuitry. 2

Proof:(of Theorem 19)

Our T̂C
0

3 circuit C that implements the ideas above is the following:

0. At the input, we have the d2 entries Aij, i, j ∈ [d] of A, a set Π of short primes (such
that Π can be partitioned into nc sets Πi that are pairwise disjoint, i.e., Π = ∪nci=1Πi),
and the numbers I = {1, 2, . . . , (m− d+ 1)}.

1. In majority-depth one, we obtain (1) Aij mod p for each prime p in our basis, and (2)
Mi =

∏
p∈Πi

p for each of the nc sets Πi that constitute Π, and (3) the CRR of the
characteristic polynomial of A (via appeal to Lemma 20).

2. In the next layer of threshold gates, we compute (1)
∏nc

i (Mi − 1)/2 in CRR, and (2)
the coefficients of the polynomial r in CRR, by appeal to Lemma 22.

3. At this point, by Lemma 21, AC0 circuitry can obtain r(A) = Am in CRR, and with one
more layer of MAJORITY gates we can convert to binary, by appeal to Corollary 11.

2

Now we consider the “succinct” versions of the problems of computing powers of integers
and matrices (i.e., where the power is given in binary, instead of in unary notation), and
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show that these problems reduce to BitSLP. (We do not consider taking powers of integers
as a separate problem; an integer can be viewed as a 1-by-1 matrix.) Define:

Bit− k−MatPow = {(A,N, p, q, I) : the Ith bit of entry (p, q) of the (k × k) matrix AN is 1 }

(Here, the matrix A is represented by k2 arithmetic circuits, with one circuit for each entry.)

Theorem 23 For every k ∈ N, Bit-k-MatPow polynomial time reduces to BitSLP.

Proof: It is sufficient to produce arithmetic circuits computing AN . This is easily obtained
via repeated squaring:

Since M is a (k × k) matrix with entries that are represented as arithmetic circuits, we
can again compute AN using nO(1) additional arithmetic gates, by repeated squaring (where
N is an n-bit number). Again, it is easy to construct this circuit, in polynomial time. 2

3.5 Reducing Sum-of-square-roots to Matrix Powering

In this section, we digress slightly from our presentation of efficient algorithms (in TC0

or in CH), in order to address the question of whether the problems that we have shown
to lie in CH might have much more efficient algorithms. Evidence for the intractability of
PosSLP and BitSLP is presented in [ABKPM09]. But there is much less evidence that matrix
powering is difficult. Here, we show that if one could power 2-by-2 matrices in PH, then
it would yield an improved upper bound on the well-known Sum-of-Square-Roots problem.
More formally, we present a reduction, showing that the Sum-of-Square-Roots problem is
reducible to the problem of computing large powers of 2-by-2 integer matrices, where the
power of the reduction lies low in CH.

Definition 24 [The Sum-of-Square-Roots Problem] Let a = (a1, . . . , an) be a list of
n-bit positive integers, and let σ = (σ1, . . . , σn) ∈ {−1,+1}n. Define SSQRT(a, σ) to be the
problem of determining if:

n∑
i=1

σi
√
ai > 0

Theorem 25 SSQRT ∈ PHPP
Bit-2-MatPow

.

Our proof makes use of Linear Fractional Transformations (LFTs), which in turn corre-
spond directly to 2-by-2 matrices. We introduce LFTs in the next subsection.
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3.6 Linear Fractional Transformations (LFTs)

Here we give a brief introduction to LFTs based on the expositions in [EP97, Pot97, Pot99],
concentrating only on the aspects required in this paper.

A linear fractional transformation is a function mapping y 7→ ay+c
by+d

for reals (and prefer-

ably integers) a, b, c, d; we associate the matrix

(
a c
b d

)
to this mapping. The interesting

thing about LFTs is that the matrix corresponding to the composition of two LFTs is the
usual product of the matrices corresponding to the two LFTs. In other words, if the matrix

corresponding to φi(y) is

(
ai ci
bi di

)
(for i = 1, 2), then a matrix corresponding to φ1φ2(y)

(which abbreviates φ1(φ2(y))) is

(
a1 c1

b1 d1

)(
a2 c2

b2 d2

)
, as can be easily verified. In this

paper we deal only with nonsingular LFTs (i.e., LFTs whose matrices have non-zero de-
terminant). An LFT is said to be positive if all four entries in its matrix have the same
sign.

Let φ be an LFT and let M =

(
a c
b d

)
be its matrix. Then φ acts as a bijection between

any interval [p, q] and a subset of the extended reals R ∪ {∞}. Further, this subset is also
an “interval” (in the sense formally described in [EP97]) – where this “interval” possibly
includes ∞): either [φ(p), φ(q)] or [φ(q), φ(p)]. (If b < a, then the “interval” [a, b] is equal
to (−∞, b] ∪ [a,∞) ∪ {∞}.) Notice that we do not claim that there is a linear order on the
reals augmented with ∞. Instead, as in [EP97], we refer to these sets as “intervals” in the
same sense that connected subsets of the unit circle can be called intervals.

For a concrete example, φ[0,∞] is the interval [a
b
, c
d
] if det(M) < 0 and the interval

[ c
d
, a
b
] if det(M) > 0. Notice that φ(∞) is taken to be limy→∞ φ(y) = a

b
. Notice also that

(−1/x)[−1, 1] is the interval [1,−1] containing ∞.
An LFT is said to be refining for an interval [p, q] if φ[p, q] ⊆ [p, q]. We will need the

following two propositions from [Pot97]:

Proposition 26 Given two intervals [p, q] and [r, s] with p 6= q and r 6= s, there exists an
LFT φ with φ[p, q] = [r, s].

Proposition 27 For LFTs φ and ψ we have φ[0,∞] ⊇ ψ[0,∞] iff ψ = φγ for a positive
LFT γ.

Thus for any sequence of nested intervals [p0, q0] ⊇ [p1, q1] ⊇ . . . ⊇ [pn, qn] ⊇ . . . we have
[pn, qn] = φ0φ1 . . . φn[0,∞] where φ0 is an LFT and all other φi’s are positive LFTs.9 Thus,
given any sequence [p0, q0] ⊇ [p1, q1] ⊇ . . . of nested intervals that converges to a real number
r, and given any infinite sequence of positive LFTs φ1, φ2, . . . and LFT φ0 (represented by
matrices M1,M2, . . . and M0, respectively) such that, for all n, [pn, qn] = φ0φ1 . . . φn[0,∞],
then the infinite product of matrices Πi represents r; and the initial finite subsequence of
LFTs applied to the interval [0,∞] yields increasingly finer approximations to r.

9We call [pn, qn], the nth convergent of the LFT sequence φ.
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LFTs are closely related to continued fractions; in fact, the continued fraction

a0 +
b0

a1 + b1
...

corresponds to the LFT

(
a0 b0

1 0

)(
a1 b1

1 0

)
. . ..

An LFT for the square root function is:

√
x ≡

∞∏
n=0

(
x x
1 x

)
for x ∈ (1,∞]. This differs slightly from the LFT specified in [Pot97, Pot99]. We establish
its correctness below.

To see that this LFT φ is an LFT for the square root function, we first establish a bound
on the length of the nth convergent. We use the following notation: ‖[p, q]‖ = q − p denotes
the length of the interval [p, q]. Next we show that ‖φn[0,∞]‖ → 0 as n→∞.

Length of the nth convergent Let Mi =

(
ai ci
bi di

)
and Pi =

∏i−1
j=0 Mj =

(
Ai Ci
Bi Di

)
.

Then the length of the interval [pn, qn] =
∏n

i=0Mi[0,∞] = PnMn[0,∞] is given by:

‖PnMn[0,∞]‖ =

∥∥∥∥( An Cn
Bn Dn

)(
an cn
bn dn

)
([0,∞])

∥∥∥∥
=

∥∥∥∥( Anan + Cnbn Ancn + Cndn
Bnan +Dnbn Bncn +Dndn

)
([0,∞])

∥∥∥∥
=

∣∣∣∣Anan + Cnbn
Bnan +Dnbn

− Ancn + Cndn
Bncn +Dndn

∣∣∣∣
=

∣∣∣∣ (AnDn −BnCn)(andn − bncn)

(Bnan +Dnbn)(Bncn +Dndn)

∣∣∣∣
Length of the nth convergent for the Square Root Using the notation above with

Mi =

(
x x
1 x

)
, we get

‖[pn, qn]‖ =

∣∣∣∣ (AnDn −BnCn)(x2 − x)

(xBn +Dn)(xBn + xDn)

∣∣∣∣
<

∣∣∣∣(AnDn −BnCn)(x2 − x)

(xBn)(xDn)

∣∣∣∣
=

∣∣∣∣(AnBn

− Cn
Dn

)(
1− 1

x

)∣∣∣∣
=

∣∣∣∣(qn−1 − pn−1)

(
1− 1

x

)∣∣∣∣
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Thus, inductively, qn − pn < |(q0 − p0)
(
1− 1

x

)n |.
Thus φn(y) → y0 for some y0 and all y ∈ [0,∞]. In particular, φn(y0) → y0 and thus

φn+1(y)→ φ(y0) as n→∞. Thus, φ(y0) = y0, so that

xy0 + x

y0 + x
= y0

Hence x = y2
0.

This establishes that φ is a LFT for the square root function.

Lemma 28 If [pn(a), qn(a)] denotes the nth convergent for the matrix sequence M1,M2, . . .

where each Mi = L(a) =

(
a a
1 a

)
, then qn(a) − pn(a) < a

(
1− 1

a

)n+1
. Thus if a ∈ [1, 2],

then 0 ≤ qn(a) − pn(a) < 2−n, and for all n,
√
a ∈ [pn(a), qn(a)]. Furthermore, pn(a) =

(L(a)n)1,2/(L(a)n)2,2.

Proof:
From the foregoing, we have that qn(x) − pn(x) < |(q0(x) − p0(x))

(
1− 1

x

)n |. But

[p0(x), q0(x)] =

(
x x
1 x

)
[0,∞] = [1, x]. This yields qn(x) − pn(x) < (x − 1)

(
1− 1

x

)n ≤
x
(
1− 1

x

) (
1− 1

x

)n
=
(
1− 1

x

)n+1
.

The other parts of the lemma follow immediately. 2

Proof:(of Theorem 25) Let (a, σ) be an input instance for SSQRT. Let αi be a positive
integer satisfying 2αi < ai ≤ 2αi+1. Further, let a′i = ai/2

αi be a rational in (1, 2]. Hence,
by an application of Lemma 28, any number, say pM(a′i) in the M th convergent interval of
L(ai) approximates

√
a′i with an error of at most 2−M . To obtain an approximation of

√
ai

from this we need to multiply pM(a′i) by 2b
αi
2
c (and if αi is odd then we must also multiply

this by an approximation to
√

2 – which can also be approximated in this way by setting
a = 2 and α = 0).

How good an approximation is needed? That is, how large must M be? Tiwari has
shown [Tiw92] that if a sum of n square roots ±√ai is not zero, where each ai has binary
representation of length at most s, then the sum is bounded from below by

2−(s+1)2n

Thus taking M = 2(log n)(s + 1)2n and obtaining an approximation of each
√
ai to within

2−M provides enough accuracy to determine the sign of the result. By Lemma 28, a suitable
approximation is provided by (L(ai)

M)1,2/(L(ai)
M)2,2 (or – if αi is odd – by the expression

(L(ai)
M)1,2(L(2)M)1,2/(L(ai)

M)2,2(L(2)M)2,2). Denote this fraction by Ci/Di. (Note that
each Di > 0.)
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Note that

n∑
i=1

σi
√
ai > 0 ⇔

n∑
i=1

σi
Ci
Di

> 0

⇔
n∑
i=1

σiCi
∏
j 6=i

Dj > 0

We will need to re-write the expression
∑n

i=1 σiCi
∏

j 6=iDj in order to make it easier
to evaluate. First, note that this expression is of the form

∑n
i=1

∏n
j=1 Zi,j for integers Zi,j

whose binary representation is of length less than 2n
2
. Thus this expression can written in

the form
∑n

i=1

∏n
j=1

∑2n
2

k=1 bi,j,k2
k where each bi,j,k ∈ {−1, 0, 1} is easily computable from the

input and from the oracle Bit-2-MatPow. Via the distributive law, this can be rewritten as∑n
i=1

∑
(k1,k2,...,kn)∈[2n2 ]n

∏n
j=1 bi,j,kj2

kj .
Thus there is a function f computable in polynomial time with an oracle for Bit-2-MatPow

that, on input (a, σ, i, k1, k2, . . . , kn, j, `) outputs the `th bit of the number
∏n

j=1 bi,j,kj2
kj .

(Namely, the algorithm queries the n oracle bits corresponding to bi,j,kj and combines this
information with σ to obtain the sign ∈ {−1, 0, 1}, and computes the value of the exponent∑

j kj, and from this easily determines the value of bit ` of the binary representation.)

Since addition of m numbers, each consisting of m bits is computable in T̂C
0

1, it is now
immediate that the bits of this expression are computable in PHPP. Thus in PH, using the
bits of this expression as an oracle, one can determine if the number represented in this
manner is positive or not. (Namely, is there some bit that is non-zero, and is the sign bit
positive?) 2

4 Computing Bits of Algebraic Numbers

In this section, we use the tools developed in the previous section to derive upper bounds
on the problem of computing bits of algebraic numbers.

4.1 Mathematical Preliminaries

Definition 29 (Algebraic number, Minimal Polynomial, Degree) A real number α
is called algebraic if there is a univariate polynomial p with rational (or – equivalently –
integer) coefficients such that p(α) = 0. There is a unique monic10 univariate polynomial
of minimal degree (and rational coefficients) pα(x) such that pα(α) = 0; pα is said to be the
defining polynomial or the minimal polynomial of the algebraic number α. The degree of α
is the degree of pα. The roots of pα are called the Galois conjugates of α.

10A univariate polynomial p(x) =
∑d
i=0 aix

i is monic if ad = 1.
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The minimal polynomial pα is irreducible; all of the Galois conjugates of α have the same
degree d. In particular, no root of p = pα is also a root of the first derivatives of p (denoted
p′).

The Newton-Raphson method is a well-known algorithm for computing an approximation
to a root of a univariate polynomial. For background, the reader can consult a textbook
that explains the method, such as [Sta70, FB93].

Definition 30 (Newton-Raphson) Given a polynomial p and a starting point x0, recursively
define:

xi+1 = xi −
p(xi)

p′(xi)
,

whenever xi is defined and p′(xi) is non-zero.

Note that if p is an irreducible polynomial (such as the minimal polynomial pα for an
algebraic number α), then there is an interval I = [α− β, α + β] around α such that p′ has
no roots in I, since p′(α) 6= 0 and p′ has only finitely-many roots. In fact, it is known that
if β is small enough, then for any starting point x0 in I, the sequence x0, x1, . . . not only is
infinite (because p′(xi) 6= 0), but it converges “rapidly” to α. Let us make precise the notion
of “rapid” convergence.

Let εi denote the error in the ith iteration of Newton-Raphson: εi = |xi − α|. We say
that the Newton-Raphson sequence (with starting point x0) converges quadratically (with
parameter M > 0) if, for all i ≥ 0, εi+1 ≤ Mε2i . Note that we can assume (pessimistically)
that M ≥ 1.

Much more is known about sufficient conditions on the size of the interval I = [α−β, α+β]
that are sufficient to guarantee quadratic convergence (for every choice of x0 ∈ I, for the
same parameter M), but for our purposes it is sufficient to know that this interval exists,
and hence there is a rational number x0 that we can use as the starting point for a Newton-
Raphson sequence that converges quadratically to α. The constant x0 will be hard-wired
into our algorithm. We will impose some additional requirements on x0; in particular, we will
pick x0 so that ε0 = |x0 − α| < min(1

4
, 1

2M
). With this restriction on x0, a simple induction

shows that, for all i > 0, εi ≤ 1

22iM
≤ 1

22i
.

Since the Newton-Raphson sequence converges quadratically, this means that the number
of bits of accuracy is doubling with each iteration (so that, after a polynomial number of
iterations, the approximation is accurate to an exponential number of bits). But if the ith

bit of xnc is 0 (for example), do we really know that the ith bit of α is 0? If the next 100
bits of xnc are all 1, it could still be possible that in our next underestimate xnc+1, the i-th
bit would be 1, followed by 100 0’s and then a 1. How far do we need to “look ahead”, in
order to be confident about the value of the ith bit of α?

The answer is provided by Liouville’s Theorem, which provides useful bounds on approx-
imating algebraic numbers by rational numbers (see e.g. Shidlovskii[Shi89] or Yap [Yap00]).
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Fact 31 (Liouville’s Theorem) If α is a real algebraic number of degree d ≥ 1, then there
exists a constant c = c(α) > 0 such that the following inequality holds for any γ ∈ Z and
β ∈ N, γ/β 6= α: ∣∣∣∣α− γ

β

∣∣∣∣ > c

βd

Roth’s theorem sharpens the inequality in Liouville’s theorem:

Fact 32 (Roth’s Theorem [Rot55]) If α is a real irrational algebraic number then for every
ε > 0 there exists a constant c = c(α, ε) > 0 such that the following inequality holds for any
γ ∈ Z and β ∈ N, ∣∣∣∣α− γ

β

∣∣∣∣ > c(α, ε)

β2+ε

Roth’s theorem is optimal, in some ways: the number 2 in the exponent cannot be decreased.
The rest of this subsection is an adaptation of the corresponding material in [Yap10],

which gives a logspace algorithm to compute the digits of π. In contrast to the development
in [Yap10], we choose to utilize Liouville’s Theorem for algebraic numbers, instead of the ad-
vanced arguments required for bounding the irrationality measure of π. We could throughout
replace the use of Liouville’s theorem by the much stronger and deeper Roth’s theorem, but
we prefer not to do so, in order to retain the elementary nature of the arguments. We now
introduce some terminology and notation that we will be using (some of which is standard,
and some of which was introduced in [Yap10]).

Definition 33 Let α be a real number. Let {α} = α − bαc be the fractional part of α.
Further, let {α}n = {2nα} and let αn be the n-th bit after the binary point.

It is clear that αn = 1 iff {α}n−1 ≥ 1
2
. For algebraic numbers we can sharpen this:

Lemma 34 (Adapted from [Yap10]) Let α be an irrational algebraic number of degree d,
and let c = c(α) be the constant guaranteed by Liouville’s theorem. Let δn = c

2(d−1)n+1 . Then
we have:

� αn = 1 iff {α}n−1 >
1
2

+ δn.

� αn = 0 iff {α}n−1 <
1
2
− δn.

Proof: Taking β = 2n, and letting γ ∈ N be the number whose binary representation
corresponds to the first n bits in the binary representation of α, Liouville’s theorem implies
that |α− 2−nγ| > c

2dn
, so |2nα− γ| > c

2(d−1)n = 2δn. Also, we have that γ = 2γ′ + αn, where
γ′ is the first n− 1 bits of the binary representation of α.

Thus {α}n−1 = {2n−1α} = 2n−1α− γ′ = 1
2
(2nα− γ) + αn

2
. This is greater than 1

2
+ δn if

αn = 1. A similar calculation establishes the claim also in the case when αn = 0. 2

As a consequence of Lemma 34, in order to be confident that our approximation to α is
giving us the correct value for the ith bit of α, it is sufficient to have an approximation with
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error at most 1
2O(i) . In other words, there is a constant b such that, if the ith bit of α is 1, then

the binary representation of α will have another 1 appearing no later than position number
di+b; there is a bound on how many consecutive 1’s can appear in the binary representation
of α. (And similarly, if the ith bit of α is 0, there will be another 0 that appears not too
much later.) More specifically, recalling that our starting point x0 is in the interval I where
Newton-Raphson converges quadratically to α, and where ε0 = |x0 − α| < min(1

4
, 1

2M
), this

means that there is a constant c ∈ N such that, given an n-bit number N , the N th bit of α
is equal to the N th bit of xcn.

4.2 Algebraic Numbers in CH5

In this section, we prove our main result concerning algebraic numbers.

Theorem 35 Let α =
∑∞

i=0 ai2
−(i+1) be an algebraic number, where each ai ∈ {0, 1}. Then

the language Aα = {j : aj = 1} is in PHCH3.

Proof: Let x0 be the starting point for the Newton-Raphson method as described in Sec-
tion 4.1. Since x0 is rational, let x0 = a

b
for integers a and b. Let p be the minimal polynomial

for α. Recall that the Newton-Raphson sequence is defined as xi+1 = f(xi) = xi − p(xi)
p′(xi)

=
xip
′(xi)−p(xi)
p′(xi)

for all i. Thus x2 = f(f(x0)) and more generally xi = f [i](x0), where f [i] denotes
the i-fold composition of f .

Consider an input string j of length n. As discussed in Section 4, j ∈ Aα if and only bit
j of xcn is equal to 1 (for some constant c). Our algorithm will create arithmetic circuits N

and D (in polynomial time) so that the rational number xcn is equal to N(a,b)
D(a,b)

. Then we will

use our PHCH3 algorithm from Corollary 18, to obtain the jth bit of xcn = f [cn](a/b).
First, note that any polynomial q(x) =

∑d
i=0 aix

i, with rational coefficients, when applied
to a rational input x = y

z
, (where z 6= 0) can be written as the quotient of two bivariate

integer polynomials nq(y, z) and dq(z):

q
(y
z

)
=

d∑
i=0

ai
yi

zi
· z

d−i

zd−i
=

∑d
i=0 Laiy

izd−i

Lzd
=
nq(y, z)

dq(z)
,

where L is the least common multiple of the denominators of the rational coefficients ai.
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We are especially interested in the polynomials np, dp, np′ and dp′ . Thus

f(y/z) =
(y/z)p′(y/z)− p(y/z)

p′(y/z)

=

ynp′ (y,z)

zdp′ (z)
− np(y,z)

dp(z)

np′ (y,z)

dp′ (z)

=

ynp′ (y,z)dp(z)−zdp′ (z)np(y,z)

zdp′ (z)dp(z)

np′ (y,z)

dp′ (z)

=
(ynp′(y, z)dp(z)− zdp′(z)np(y, z))dp′(z)

zdp′(z)dp(z)np′(y, z)

=
F (y, z)

G(y, z)
,

for integer bivariate polynomials F and G.

Definition 36 For a positive integer t, let the t-bicomposition of (F,G) be the pair of bi-
variate polynomials (F [t], G[t]) defined as follows:

F [1](y, z) = F (y, z), G[1](y, z) = G(y, z),

and,
F [t+1](y, z) = F (F [t](y, z), G[t](y, z)),

G[t+1](y, z) = G(F [t](y, z), G[t](y, z)).

A straightforward induction shows that f [t](y/z) = F [t](y,z)

G[t](y,z)
.

Recall that p is the minimal polynomial for α, and it does not depend on the input j
to Aα. Similarly, the starting point x0 = a

b
is a fixed constant. Thus there are arithmetic

circuits N1(a, b) and D1(a, b) of size O(1) computing F (a, b), and G(a, b), respectively. For
each t > 1, the circuit Nt(a, b) computing F [t](a, b) can be constructed by running wires
from the output gates of Nt−1 and Dt−1 to the a, b input gates, respectively, of a copy of the
circuit for N1(a, b). The circuit for Dt(a, b) is constructed similarly.

In this way, we construct in polynomial time the circuitsN(a, b) = Ncn(a, b) andD(a, b) =

Dcn(a, b) so that the rational number xcn is equal to N(a,b)
D(a,b)

, as desired. This completes the
proof. 2

4.3 Certain Transcendentals in CH5

Our results on algebraic numbers made use of Liouville’s Theorem, which shows that al-
gebraic numbers can not be “too close” to rational numbers with small denominators. A
similar property holds for several important transcendental numbers. This motivates the
following definition:
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Definition 37 The irrationality measure of a transcendental number α is the infimum of{
k : for all but finitely many (γ, β) ∈ Z× N

∣∣∣∣α− γ

β

∣∣∣∣ > 1

βk

}
The irrationality measure of π is no more than 7.10321 [ZZ20]. The irrationality measure

of e is equal to 2 (see [BB87]).
Yap took as his starting point a remarkable expression for π, discovered by Borwein,

Borwein, and Plouffe [BBP97]:

π =
∞∑
k=0

120k2 + 151k + 47

(16)k(29k4 + 210k3 + 712k2 + 194k + 15)

Borwein, Borwein, and Plouffe exhibited similar series for other transcendental numbers,
such as log10 2 and π2. Yap defined a series

∑∞
k=0 tk to be BBP-like if there are integer

polynomials p and q and an integer c so that tk = p(k)
2ckq(k)

.
With these definitions in hand, we can state Yap’s theorem:

Theorem 38 [Yap10] If α = a0a1a2 . . . is a transcendental real number that

� has finite irrationality measure, and

� can be expressed as a BBP-like series,

then there is a logspace-computable function fα such that fα(1n) = aoa1 . . . an.

We note that some of the motivation for the algorithms presented in [BBP97], as well as
some of the exposition in [Yap10], comes from the ability to compute individual bits, without
having to compute all of the earlier bits. In spite of this, the algorithm presented in [Yap10]
does yield a logspace algorithm computing all of the first n bits.

We improve on Theorem 38, by placing the function fα in the (seemingly) smaller com-
plexity class TC0. (We discuss additional improvements to Theorem 38 later in this section.)

Theorem 39 If α = a0a1a2 . . . is a transcendental real number that

� has finite irrationality measure, and

� can be expressed as a BBP-like series,

then there is a TC0-computable function fα such that fα(1n) = aoa1 . . . an.

Proof: Yap showed in [Yap10] that the finite irrationality measure condition on α implies

that, in order to compute a0a1 . . . an, it is sufficient to compute
∑nc

′

k=0 tk =
∑nc

′

k=0
p(k)

2ckq(k)
(for

some constant c′) to nc
′

bits of accuracy, and then output the first n+ 1 bits.

Let Tk =
∏
{i≤n,i 6=k} 2ckq(k). Then

∑nc
′

k=0 tk =
∑nc

′

k=0 Tkp(k)∏nc
′

k=0 2ckq(k)
.
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The numerator and denominator are both computable in TC0. Thus the theorem follows
immediately by an application of Theorem 5. 2

Both [Yap10] and [BBP97] explicitly ask if the algorithms that they present for π and
similar numbers hold only for the binary representation, or if they can be modified to yield
algorithms for the base-b representations for other bases b. But, as observed in Note 12, our
techniques work equally well for base 10 or any other base.

Similarly, our proof of Theorem 39 applies not only to series that satisfy Yap’s BBP-like
criterion, but for any series

∑∞
k=0 tk that converges rapidly to a transcendental number with

bounded irrationality measure, if tk = n(k)
d(k)

and the functions n and d are computable by

TC0 circuits of size polynomial in n. They do not need to be polynomials (or polynomials
multiplied by bck). For example, to the best of our knowledge, no BBP-like series is known to
converge to Euler’s constant e, but since e =

∑∞
k=0

1
k!

where the error term εn = e−
∑n

k=0
1
k!
<

1
n!

, and where the numerator n(k) = 1 and denominator d(k) = k! are easily computable by
TC0 circuits of size polynomial in n if k = nO(1), this shows that the bits of e can also be
computed in TC0. (This can also be derived from the earlier work of Reif and Tate [RT92],
who showed that various numerical computations can be performed in P-uniform TC0; their
algorithms can be made dlogtime-uniform by appeal to [HAB02].)

Much of the motivation in [BBP97] (and, to a lesser extent, in [Yap10]) comes from
efficient implementations of programs to compute various constants. We do not claim that
the algorithms presented here lend themselves to efficient implementation. They merely
show that certain computations can be performed in TC0.

We now wish to prove a result that is analogous to Theorem 35, for various important
transcendental numbers. However, in Theorem 35 we equate the characteristic sequence of a
language with a real number in [0, 1], whereas the constants such as π and e that we consider
lie outside of this interval. Thus, when we say “π ∈ CHk” and “e ∈ CHk”, we mean that the
languages corresponding to the fractional parts of π and e ({π} and {e}, respectively, using
the notation introduced above) lie in CHk.

First, we show that the transcendental numbers that Yap studied in [Yap10] all lie in
PHCH3 .

Theorem 40 Let α =
∑∞

k=0 tk be a transcendental real number having finite irrationality
measure and a BBP-like series. Then α ∈ PHCH3.

Proof: We follow the same basic strategy as in the proof of Theorem 35, but we make use
of the TC0 circuits constructed in Theorem 15.

Given an input string j of length n, our goal is to compute the jth bit of the fractional part
of α. As in Theorem 39, because of bounded irrationality measure and the rapid convergence
of our series

α =
∞∑
k=0

tk =
∞∑
k=0

p(k)

2ckq(k)
,

(for integer polynomials p and q), it suffices to compute the jth bit of
∑2c

′n

k=0 tk, for some
constant c′. As in the proof of Corollary 18, we first make use of some polynomial-time
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computation (in this case, it will be PH computation), to prepare the CRR-representation
of an exponentially-large input instance for a TC0 circuit.

First, let us assume that tk > 0 for all k. (This is true for the series for π.) Then we will
modify the algorithm for more general BBP-like series.

The input instances for Theorem 15 need to be of the form
∑r

i=1
Xi
Yi

, where there is a

natural number t such that 2t−1 ≤ Yi < 2t for all i. The numerators of the terms tk are of
the form 2ckq(k) where there is some k0 such that the polynomial q(k) is increasing for all
k > k0. Thus, for all large n, the number B = max{2ckq(k) : 1 ≤ k ≤ 2c

′n} will be equal to
2c
′n (and for smaller n, B can be computed via table look-up). Then, with B in hand, we

can compute t such that 2t−1 ≤ B < 2t (and for all large n, t will simply be c′n).11

Given k, we can compute p(k) and q(k) such that tk = p(k)
2ckq(k)

, and can compute a number

bk such that 2bk−1 ≤ 2ckq(k) < 2bk . Let ek = t− bk. Note that tk = 2ekp(k)
2ek2ckq(k)

, and for every

k, 2t−1 ≤ 2ek2ckq(k) < 2t.
Now, similar to the proof of Corollary 18, we can let f be the function that, on input

(x, y) = ((j, t), (k, b, p)) outputs “p is not prime” if p is not prime, and otherwise outputs
2ekp(k) mod p if b = 0 and outputs 2ek2ckq(k) mod p if b = 1. Thus, we now have the CRR
representation that satisfies the input requirements of Theorem 15, and we can appeal to
Proposition 2.

This completes the argument, in the case when tk > 0 for all k. Now we consider the
more general case.

Since p and q are polynomials, they each tend to either ∞ or −∞ for large k. If they
are both positive or both negative for large k, then tk > 0 for all large k, and the analysis
is very similar to what appears above. Namely, let tk > 0 for all k > K Let Q =

∑K
k=0 tk.

Then we can compute an approximation to
∑∞

k=K+1 tk as above, and then simply add Q to
the result.

In the remaining case, tk < 0 for all large k. In that case, we can compute Q as above,
and compute our underestimate A to

∑∞
k=K+1 |tk| as above, and then the desired answer is

Q −
∑∞

k=K+1 |tk| – but note that Q − A is an overestimate to α, which means that, if the
jth bit of Q−A is 1, it is still possible that the jth bit of α is 0. However, here we can once
again appeal to the bounded irrationality measure of α. If we increase the accuracy of our

approximation A (by summing up to k = 2n
c′′

for some c′′ > c), we are guaranteed to obtain
an approximation that yields the correct bit for j. 2

Corollary 41 π ∈ PHCH3.

There has been considerable progress using the BBP framework since the original paper
[BBP97] appeared. An extensive list can be found in [Bai17]. Many of the “BBP-like”
series presented in [Bai17] do not actually fit Yap’s definition of “BBP-like”; the definition

in [Yap10] requires that tk be of the form p(k)
2ckq(k)

, whereas many of the series presented

11This simplified argument was pointed out to us by an anonymous referee.
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in [Bai17] have tk of the form p(k)
βkq(k)

for some integer β where β 6= 2. With some minor
adjustments, we can accommodate this broader definition, too.

Corollary 42 Let α =
∑∞

k=0 tk be a transcendental real number having finite irrationality
measure, where there are integer polynomials p and q and integer β with |β| ≥ 2, and

tk = p(k)
βkq(k)

. Then α ∈ PHCH3.

Proof: First we deal with the case when β > 0.
As above, given an input string j of length n, our goal is to compute the jth bit of

the fractional part of α, and once again it suffices to compute the jth bit of
∑2n

c′

k=0 tk, for
some constant c′, and once again we begin with a PH computation, to prepare the CRR-
representation of an exponentially-large input instance for a TC0 circuit.

Now, however, we will compute p(k) and q(k) in β-ary notation, and begin by computing

B = max{βkq(k) : 1 ≤ k ≤ 2n
c′}, and then find t such that βt−1 ≤ B < βt, and let f be the

function that, on input (x, y) = ((j, t), (k, b, p)) outputs “p is not prime” if p is not prime,
and otherwise outputs βekp(k) mod p if b = 0 and outputs βekq(k) mod p if b = 1. Instead
of the circuits that were presented in the proof of Theorem 15, we make use of the β-variant
of those circuits (as defined in the footnotes to the proof of Theorem 5). This is because
determining if a number B is less than βt is easy in base β, but less easy in base 2. Note
that these β-variant circuits still produce the final answer in binary; it is merely the case
that some of the intermediate computations take place using powers of β rather than powers
of 2.

The analysis proceeds precisely as in the preceding theorem.
Now, we consider the case where β < 0. In this case, note that α =

∑∞
k=0 tk =

∑∞
`=0(t2`)+

t2`+1) =
∑∞

`=0( p(2`)
β2`q(2`)

+ p(2`+1)
β2`+1q(2`+1)

) =
∑∞

`=0(p(2`)q(2`+1)+p(2`+1)βq(2`)
β2`+1q(2`)q(2`+1)

) =
∑

`=0
r(`)
γ`s(`)

for γ =

β2 > 0 and integer polynomials r and s. Thus this case reduces to the previous case.
2

We can, in principle, handle even more general terms tk. Our proof requires only that
tk = n(k)

d(k)
for numerator and denominator functions n and d, such that βtn(k) mod p and

βtd(k) mod p be “easy” to compute (in PH), and also that it be possible (in PH) to find t
such that βt−1 ≤ d(k) < βt. We have no examples at hand, to show that this generalization
is useful for transcendental reals of interest. In particular, we do not see how to give a PHCH3

upper bound for e.
It is clear from the discussion after Theorem 39 that e ∈ CH. The “näıve approach”

mentioned at the start of the proof of Theorem 15 leads to a proof that e ∈ PHCH4 .

4.4 Lower Bound

In this section, we complement our upper bounds on algebraic numbers by giving (rather
weak) lower bounds for certain algebraic numbers. We emphasize that our lower bounds are
only for rational numbers; we do not have any lower bounds at all for irrational algebraic
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numbers. Our lower bounds for rational numbers are fairly tight; we observe that all such
numbers lie in ACC0 =

⋃
m AC0[m], and for any prime m there is a rational number that lies

outside AC0[m].
First, we show membership in ACC0. The binary expansion of any rational number

α ∈ [0, 1] is ultimately periodic, meaning that it has the form α =
∑∞

i=0 ai2
−(i+1) where the

sequence a0, a1, a2, . . . has the property that there is some k and some N such that, for all
j ≥ N, aj = aj+k. Let S = {` : N ≤ ` < N + k, a` = 1} = {`1, `2, . . . `r} for some r < k.
Thus the language Aα = {x : ax = 1} is equal to F ∪ L1 ∪ . . . ∪ Lr, where F is a finite
set (of some strings that lexicographically precede N) and Li = {`i + ck : c ∈ N}. Each
Li is therefore a linear set, and A is a semi-linear set (defined as the union of linear sets).
Barrington and Corbett [BC91] showed that all semi-linear sets lie in ACC0. Thus we have
shown:

Theorem 43 [BC91] Let α be a rational number in [0, 1]. Then the language Aα ∈ ACC0.

Now we turn to a lower bound.

Lemma 44 For a given odd modulus m, there is a rational number αm whose language Aαm
is hard for AC0[m] under AC0-Turing reductions. More precisely, the MODm function reduces
to Aαm under Dlogtime-uniform projections.

Proof: Let m be an odd number, m > 1, and let αm be the rational corresponding to the
language Aαm = {cm : c ∈ N}.

The well-known Carmichael function λ(m) from number theory has the property that,
for any odd m > 1, λ(m) > 1 and 2λ(m) ≡ 1 (mod m).

The MODm function is defined so that MODm(x) = 1 if the number of 1’s in x is a
multiple of m, and MODm(x) = 0 otherwise. Thus our goal is to take x as input and
produce as output a number f(x) that is a multiple of m if and only if the number of 1’s in
x is a multiple of m. We make use of a construction that was used earlier in [ASS01, BL87].
If x = x0x1 . . . xn, let f(x) be the number with binary representation

xn0dxn−10dxn−2 . . . x20dx10dx0

where d + 1 = λ(m). Thus f(x) =
∑n

i=0 2iλ(m)xi, which is equivalent to
∑n

i=0 xi mod m. It
is clear that f is easy to compute via a Dlogtime-uniform projection. The lemma follows,
since the MODm language is complete for AC0[m] under AC0-Turing reductions. 2

Corollary 45 For every prime m, there is a rational number βm such that Aβm 6∈ AC0[m].

Proof: Let p be any prime other than m. If the language Aαp from Lemma 44 were in
AC0[m], then the MODp language would also be in AC0[m], contrary to the lower bounds of
[Raz87, Smo87]. 2
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The restriction to prime moduli in Corollary 45 is essential, given the current state of
lower bound techniques. It is still not known whether NP = AC0[6]. The best lower bounds
against AC0[m] for composite m are those of [All99, MW20].

It should perhaps be mentioned that there are rationals in AC0, other than dyadic ra-
tionals. For instance, 1

3
= 010101 . . . corresponds to the set given by the regular expression

(0 ∪ 1)∗1, which is clearly in AC0. Since every rational number corresponds to a regu-
lar language, and since there are nice characterizations of the regular languages in AC0

[BCST92, CS01], there is probably a very crisp characterization of the rational numbers in
AC0.

5 Open Questions and Discussion

Is conversion from CRR to binary in dlogtime-uniform T̂C
0

1? This problem has been known

to be in P-uniform T̂C
0

1 starting with the seminal work of Beame, Cook, and Hoover [BCH86],
but the subsequent improvements on the uniformity condition [CDL01, HAB02] introduced
additional complexity that translated into increased depth. We have been able to reduce
the majority-depth (relative to the construction in [HAB02]) by rearranging the algorithmic
components introduced in this line of research, but it appears to us that a fresh approach
will be needed, in order to decrease the depth further.

Is BitSLP in PHPP? An affirmative answer to the first question implies an affirmative

answer to the second, and this would pin down the complexity of BitSLP between P#P and
PHPP. We have not attempted to determine a small value of k such that BitSLP ∈ (Σp

k)
A

for some set A ∈ CH3, because we suspect that BitSLP does reside lower in CH, and any
improvement in majority-depth will be more significant than optimizing the depth of AC0

circuitry, since PH ⊆ PPP.
Is PosSLP in PH? Some interesting observations related to this problem were announced

recently [Ete13, JS12].
Is it easy to compute bits of large powers of small matrices? We remark in this regard,

that there are some surprising things that one can compute, regarding large powers of integers
[HKR10] and the most significant bits of 2× 2 matrices [GOW15].

Does every transcendental real with a BBP-like series have finite irrationality measure?
Is e ∈ PHCH3? Is there any fundamental reason why e should be more complex than π

in this sense?
Is any irrational algebraic number in PH? Is every irrational algebraic number in AC0?

We strongly conjecture that the answer to the second question is “no”, and we suspect that
the answer to the first question is also “no”, although there is absolutely no evidence to
support either conjecture. We think that it would be very instructive see an example of an
irrational algebraic number that is outside of AC0. It would be remarkable and important,
if it should turn out that irrational algebraic numbers reside in PHCH3 − PH.
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reals. In Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–
131. World Scientific, 2003.

[DMS94] Paul Dietz, Ioan Macarie, and Joel Seiferas. Bits and relative order from
residues, space efficiently. Information Processing Letters, 50(3):123–127, 1994.

[DP12] Samir Datta and Rameshwar Pratap. Computing bits of algebraic numbers. In
Proc. 9th Theory and Applications of Models of Computation (TAMC), volume
7287 of Lecture Notes in Computer Science, pages 189–201. Springer, 2012.

[EP97] A. Edalat and Peter M. Potts. A new representation for exact real numbers.
Electronic Notes in Theoretical Computer Science, 6:119–132, 1997.

[Ete13] Kousha Etessami. Probability, recursion, games, and fixed points. Talk pre-
sented at Horizons in TCS: A Celebration of Mihalis Yannakakis’ 60th Birthday,
2013.

[EY10] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria
and other fixed points. SIAM J. Comput., 39(6):2531–2597, 2010.

[FB93] J. Douglas Faires and Richard L. Burden. Numerical Methods. PWS Publish-
ing, Boston, 1993.

[Fre12] Rusins Freivalds. Hartmanis-Stearns conjecture on real time and transcen-
dence. In Michael J. Dinneen, Bakhadyr Khoussainov, and André Nies, edi-
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[HKR10] Mika Hirvensalo, Juhani Karhumäki, and Alexander Rabinovich. Computing
partial information out of intractable: Powers of algebraic numbers as an ex-
ample. Journal of Number Theory, 130:232–253, 2010.

[HS65] Juris Hartmanis and Richard E Stearns. On the computational complexity of
algorithms. Transactions of the American Mathematical Society, 117:285–306,
1965.

[HV06] Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic
in finite fields of characteristic two. In Proc. 23rd International Symposium
on Theoretical Aspects of Computer Science (STACS), volume 3884 of Lecture
Notes in Computer Science, pages 672–683. Springer, 2006.
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